Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(11): 1432-1435, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206104

RESUMO

To control the synthesis of designer catalysts on graphitic materials up to the nanometer scale, methods should be provided that combine both nanoscale characterization and bulk scale experiments. This work reports the grafting of N-heterocyclic carbene (NHC)-type catalysts on graphite, both at nanometer and bulk scale, as it allows increased insights into the nature of the immobilized catalysts.

2.
Chem Sci ; 13(31): 9035-9046, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36091218

RESUMO

Adsorptive separation is a promising lower-energy alternative for traditional industrial separation processes. While carbon-based materials have a long history in adsorptive removal of organic contaminants from solution or gas mixtures, separation using an adsorption/desorption protocol is rarely considered. The main drawbacks are the limited control in bulk adsorption experiments, as often all organic molecules are adsorbed, and lack of desorption methods to retrieve the adsorbed molecules. Using high-resolution on-surface characterization with scanning tunneling microscopy (STM), an increased understanding of the on-surface adsorption behavior under different conditions was obtained. The insight obtained from the nanoscale experiments was used to develop a highly selective separation method using adsorption and desorption on graphite, which was tested for the separation of quinonoid zwitterions. These experiments on adsorptive separation using self-assembly on graphite show its potential and demonstrate the advantage of combining surface characterization techniques with bulk experiments to exploit different possible applications of carbon-based materials.

3.
Chem Commun (Camb) ; 58(55): 7686-7689, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35730551

RESUMO

A green multicomponent synthesis of previously unreported octahydropyrimido[4,5-g]quinazoline-5,6-diones was developed from simple building blocks. These highly symmetrical compounds show strong propensity to self-assembled molecular network (SAMN) formation on highly oriented pyrolytic graphite. The SAMN type is easily tunable by changing molecular characteristics. The redox behavior was studied by cyclic voltammetery.

4.
Adv Sci (Weinh) ; 9(19): e2105017, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35419972

RESUMO

Covalent functionalization of graphene (CFG) has shown attractive advantages in tuning the electronic, mechanical, optical, and thermal properties of graphene. However, facile, large-scale, controllable, and highly efficient CFG remains challenging and often involves highly reactive and volatile compounds, requiring complex control of the reaction conditions. Here, a diazonium-based grafting ink consisting of only two components, i.e., an aryl diazonium salt and the solvent dimethyl sulfoxide (DMSO) is presented. The efficient functionalization is attributed to the combination of the solvation of the diazonium cations by DMSO and n-doping of graphene by DMSO, thereby promoting electron transfer (ET) from graphene to the diazonium cations, resulting in the generation of aryl radicals which subsequently react with the graphene. The grafting density of CFG is controlled by the reaction time and very high levels of functionalization, up to the failing of the Tuinstra-Koenig (T-K) relation, while the functionalization layer remains at monolayer height. The grafting ink, effective for days at room temperature, can be used at ambient conditions and renders the patterning CFG by direct writing as easy as writing on paper. In combination with thermal sample treatment, reversible functionalization is possible by subsequent writing/erasing cycles.

5.
Chem Sci ; 12(39): 13167-13176, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34745548

RESUMO

Self-assembled molecular networks (SAMNs) on surfaces evoke a lot of interest, both from a fundamental as well as application point of view. When formed at the liquid-solid interface, precise control over different polymorphs can be achieved by simply adjusting the concentration of molecular building blocks in solution. Significant influence of solute concentration on self-assembly behavior has been observed, whether the self-assembly behavior is controlled by either van der Waals forces or hydrogen bonding interactions. In both cases, high- and low-density supramolecular networks have been observed at high and low solute concentrations, respectively. In contrast to this "concentration-in-control" self-assembly concept here we report an atypical concentration dependent self-assembly behavior at a solution-solid interface. At the interface between heptanoic acid (HA) and highly oriented pyrolytic graphite (HOPG), we show, using scanning tunneling microscopy (STM), the formation of a low-density porous network at high solute concentrations, and a high-density compact network at low solute concentrations. This intriguing inverse concentration dependent self-assembly behavior has been attributed to the preaggregation of solute molecules in the heptanoic acid solution as revealed by UV-vis spectroscopy. The observed results have been correlated to the molecular density of self-assembled monolayers attained at the HA/HOPG interface.

6.
Chem Soc Rev ; 50(4): 2280-2296, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404567

RESUMO

Carbocatalysis holds a privileged position as a sustainable alternative to metal-based catalysis. While the focus in solution-based catalytic processes generally lies on how the heterogeneous catalyst affects the solution composition, more attention has recently been given to the analysis of the carbon material itself. Various outstanding surface characterisation techniques, efficient in assessing the catalyst on-surface composition, are now available. These include high-resolution imaging tools such as scanning tunneling microscopy (STM), capable of bringing new insights into the processes determining rate and selectivity effects induced by carbocatalysts. In this regard, the use of self-assembly on graphite as a strategy to direct the outcome of chemical reactions has already shown great potential. This promising approach gives the scientific community the exciting prospect of rationalising selectivity in carbocatalysis with pristine graphite by linking in-solution and on-surface composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA