Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 100: 897-914, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948127

RESUMO

A novel random copolymer 4, containing diallylmethylamine and N1,N1-diallyl-N1-methyl-N6,N6,N6-tripropylhexane-1,6-diammonium dibromide units in a 1:1 ratio (polymer 4) was synthesized via Butler's cyclopolymerization technique. Characterization was accomplished by 1H NMR, elemental analysis, and Fourier-transform infrared spectroscopy (FTIR). Polymer 4 was tested as corrosion inhibitor for low carbon steel in 15% HCl solution via gravimetric and electrochemical approaches. The analysis of the metal specimen surfaces was done using scanning electron microscope (SEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDAX), and X-ray photoelectron spectroscopy (XPS) methods. Polymer 4 is inhibitor for the substrate particularly at elevated temperatures. Corrosion mitigation is by chemisorption mechanism and can be best described with the Langmuir and El-Awady et al. kinetic-thermodynamic adsorption isotherms. Polymer 4 corrosion mitigation capacity can be improved by the addition of a minute amount of I- ions. Inhibition efficiency of 92.99% has been achieved with 500 ppm polymer 4 + 1 mM KI mixture at 25 °C. Surface analysis results support the claim of adsorption of additive molecules on steel surface. From XPS results, corrosion products on steel surface exposed to the free acid solution are mixtures of chlorides, carbonates, oxides, and hydroxides. In polymer 4 + KI system, polymer 4 molecules are adsorbed on triiodide and pentaiodide ions layer. The improved corrosion inhibition of polymer 4 by I- ions is synergistic in nature according to calculated synergism parameter. Polymer 4 is a promising corrosion inhibitor for oil well acidizing purpose.


Assuntos
Ácidos/química , Metilaminas/química , Polímeros/química , Adsorção , Corrosão , Ciclização , Espectroscopia Dielétrica , Eletroquímica , Elementos Químicos , Concentração de Íons de Hidrogênio , Metilaminas/síntese química , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Polímeros/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA