Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 112(4): 562-573, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37815147

RESUMO

The over-expression of c-Jun N-terminal kinase (JNK2), a stress activated mitogen kinase, in the aortic wall plays a critical role in the formation and progression of abdominal aortic aneurysm (AAA). This triggers chronic downstream upregulation of elastolytic matrix metalloproteinases (MMPs), MMPs2 and 9 to cause progressive proteolytic breakdown of the wall elastic matrix. We have previously shown that siNRA knockdown of JNK2 gene expression in an AAA culture model stimulates downstream elastin gene expression, elastic fiber formation, crosslinking and reduces elastolytic MMPs2 and 9. Since naked siRNA poorly routes to intracellular targets, has poor stability in blood, and could be potentially toxic and immunogenic, this project is aimed to develop PEGylated lipid nanoparticles (LNPs) for delivery of JNK siRNA and to generate evidence of successful JNK2 knockdown and downstream attenuation of MMP2 gene and protein expressions. LNPs were formulated using thin-film hydration technique and had the size of 100-200 nm with zeta-potential ranging between 30 and 40 mV. JNK siRNA loaded PEGylated LNPs successfully knocked down JNK2 in cytokine-activated rat aneurysmal smooth muscle (EaRASMC) cultures. This resulted in a downstream decrease in MMP2 gene and protein expression and an upward trend in expression of genes for proteins critical for elastic fiber assembly such as elastin (ELN) and lysyl oxidase (LOX). Our result indicates cationic LNPs to be potential carriers for JNK siRNA delivery improving potency for elastin homeostasis required for AAA repair which could possibly provide benefits in preventing the progression of small AAAs.


Assuntos
Matriz Extracelular , Lipossomos , Metaloproteinase 2 da Matriz , Nanopartículas , Ratos , Animais , Ratos Sprague-Dawley , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Matriz Extracelular/metabolismo , Elastina/metabolismo , Polietilenoglicóis , RNA Interferente Pequeno/genética
2.
Front Neurol ; 14: 1237647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877029

RESUMO

Introduction: Mild traumatic brain injury (mTBI) caused by repetitive low-intensity blast overpressure (relBOP) in military personnel exposed to breaching and heavy weapons is often unrecognized and is understudied. Exposure to relBOP poses the risk of developing abnormal behavioral and psychological changes such as altered cognitive function, anxiety, and depression, all of which can severely compromise the quality of the life of the affected individual. Due to the structural and anatomical heterogeneity of the brain, understanding the potentially varied effects of relBOP in different regions of the brain could lend insights into the risks from exposures. Methods: In this study, using a rodent model of relBOP and western blotting for protein expression we showed the differential expression of various neuropathological proteins like TDP-43, tight junction proteins (claudin-5, occludin, and glial fibrillary acidic protein (GFAP)) and a mechanosensitive protein (piezo-2) in different regions of the brain at different intensities and frequency of blast. Results: Our key results include (i) significant increase in claudin-5 after 1x blast of 6.5 psi in all three regions and no definitive pattern with higher number of blasts, (ii) significant increase in piezo-2 at 1x followed by significant decrease after multiple blasts in the cortex, (iii) significant increase in piezo-2 with increasing number of blasts in frontal cortex and mixed pattern of expression in hippocampus and (iv) mixed pattern of TDP-3 and GFAP expression in all the regions of brain. Discussion: These results suggest that there are not definitive patterns of changes in these marker proteins with increase in intensity and/or frequency of blast exposure in any particular region; the changes in expression of these proteins are different among the regions. We also found that the orientation of blast exposure (e.g. front vs. side exposure) affects the altered expression of these proteins.

3.
Mol Pharm ; 20(6): 2801-2813, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37093652

RESUMO

Extracellular vesicles (EVs) are nanosized vesicles that carry cell-specific biomolecular information. Our previous studies showed that adult human bone marrow mesenchymal stem cell (BM-MSC)-derived EVs provide antiproteolytic and proregenerative effects in cultures of smooth muscle cells (SMCs) derived from an elastase-infused rat abdominal aortic aneurysm (AAA) model, and this is promising toward their use as a therapeutic platform for naturally irreversible elastic matrix aberrations in the aortic wall. Since systemically administered EVs poorly home into sites of tissue injury, disease strategies to improve their affinity toward target tissues are of great significance for EV-based treatment strategies. Toward this goal, in this work, we developed a postisolation surface modification strategy to target MSC-derived EVs to the AAA wall. The EVs were surface-conjugated with a short, synthetic, azide-modified peptide sequence for targeted binding to cathepsin K (CatK), a cysteine protease overexpressed in the AAA wall. Conjugation was performed using a copper-free click chemistry method. We determined that such conjugation improved EV uptake into cultured aneurysmal SMCs in culture and their binding to the wall of matrix injured vessels ex vivo. The proregenerative and antiproteolytic effects of MSC-EVs on cultured rat aneurysmal SMCs were also unaffected following peptide conjugation. From this study, it appears that modification with short synthetic peptide sequences seems to be an effective strategy for improving the cell-specific uptake of EVs and may be effective in facilitating AAA-targeted therapy.


Assuntos
Aneurisma da Aorta Abdominal , Vesículas Extracelulares , Células-Tronco Mesenquimais , Ratos , Humanos , Animais , Vesículas Extracelulares/metabolismo , Células Cultivadas , Aneurisma da Aorta Abdominal/terapia , Aneurisma da Aorta Abdominal/metabolismo , Aorta , Matriz Extracelular
4.
Front Cardiovasc Med ; 9: 879977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783852

RESUMO

The extracellular matrix (ECM) represents a complex and dynamic framework for cells, characterized by tissue-specific biophysical, mechanical, and biochemical properties. ECM components in vascular tissues provide structural support to vascular cells and modulate their function through interaction with specific cell-surface receptors. ECM-cell interactions, together with neurotransmitters, cytokines, hormones and mechanical forces imposed by blood flow, modulate the structural organization of the vascular wall. Changes in the ECM microenvironment, as in post-injury degradation or remodeling, lead to both altered tissue function and exacerbation of vascular pathologies. Regeneration and repair of the ECM are thus critical toward reinstating vascular homeostasis. The self-renewal and transdifferentiating potential of stem cells (SCs) into other cell lineages represents a potentially useful approach in regenerative medicine, and SC-based approaches hold great promise in the development of novel therapeutics toward ECM repair. Certain adult SCs, including mesenchymal stem cells (MSCs), possess a broader plasticity and differentiation potential, and thus represent a viable option for SC-based therapeutics. However, there are significant challenges to SC therapies including, but not limited to cell processing and scaleup, quality control, phenotypic integrity in a disease milieu in vivo, and inefficient delivery to the site of tissue injury. SC-derived or -inspired strategies as a putative surrogate for conventional cell therapy are thus gaining momentum. In this article, we review current knowledge on the patho-mechanistic roles of ECM components in common vascular disorders and the prospects of developing adult SC based/inspired therapies to modulate the vascular tissue environment and reinstate vessel homeostasis in these disorders.

5.
Stem Cells Transl Med ; 11(8): 850-860, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35758561

RESUMO

Abdominal aortic aneurysms (AAAs) are localized rupture-prone expansions of the aorta with limited reversibility that develop due to proteolysis of the elastic matrix. Natural regenerative repair of an elastic matrix is difficult due to the intrinsically poor elastogenicity of adult vascular smooth muscle cells (VSMCs). This justifies the need to provide external, pro-elastin regenerative- and anti-proteolytic stimuli to VSMCs in the AAA wall towards reinstating matrix structure in the aorta wall. Introducing alternative phenotypes of highly elastogenic and contractile cells into the AAA wall capable of providing such cues, proffers attractive prospects for AAA treatment. In this regard, we have previously demonstrated the superior elastogenicity of bone marrow mesenchymal stem cell (BM-MSC)-derived SMCs (cBM-SMCs) and their ability to provide pro-elastogenic and anti-proteolytic stimuli to aneurysmal SMCs in vitro. However, the major issues associated with cell therapy, such as their natural ability to home into the AAA tissue, their in vivo biodistribution and retention in the AAA wall, and possible paracrine effects on AAA tissue repair processes in the event of localization in remote tissues remain uncertain. Therefore, in this study we focused on assessing the fate, safety, and AAA reparative effects of BM-MSC-derived cBM-SMCs in vivo. Our results indicate that the cBM-SMCs (a) possess natural homing abilities similar to the undifferentiated BM-MSCs, (b) exhibit higher retention upon localization in the aneurysmal aorta than BM-MSCs, (c) downregulate the expression of several inflammatory and pro-apoptotic cytokines that are upregulated in the AAA wall contributing to accelerated elastic matrix breakdown and suppression of elastic fiber neo-assembly, repair, and crosslinking, and (d) improve elastic matrix content and structure in the AAA wall toward slowing the growth of AAAs. Our study provides initial evidence of the in vivo elastic matrix reparative benefits of cBM-SMCs and their utility in cell therapy to reverse the pathophysiology of AAAs.


Assuntos
Aneurisma da Aorta Abdominal , Células-Tronco Mesenquimais , Animais , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/terapia , Elastina/metabolismo , Matriz Extracelular/metabolismo , Homeostase , Miócitos de Músculo Liso , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
6.
Ann Biomed Eng ; 49(8): 1909-1922, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33768411

RESUMO

Pelvic organ prolapse (POP) is common among older women who have delivered children vaginally. While the pathophysiology is not fully delineated, POP can occur in part from insufficient repair of disrupted elastic matrix fibers. Quantification of structural changes to elastic fibers has not been described previously for POP. The goal of this paper is to present a validated technique for morphometric analysis of elastic fibers in vaginal tissue cultures from lysyl oxidase like-1 knock out (LOXL1 KO) mice with POP. The effect of LOXL1 KO, effect of POP, effect of culture, and effect of elastogenic treatment on the changes in elastin fiber characteristics were tested using vaginal tissues from wild type multiparous (WT), LOXL1 KO multiparous prolapsed (POP) and LOXL1 KO multiparous non-prolapsed (NP) mice. Our results show significantly higher mean aspect ratio, maximum diameter and perimeter length in POP compared to NP after 3 weeks of tissue culture. Further, treatment of POP tissues in culture with growth factors with previously documented elastogenic effects caused a significant increase in the mean area and perimeter length of elastic fibers. This technique thus appears to be useful in quantifying structural changes and can be used to assess the pathophysiology of POP and the effect of elastogenic treatments with potential for POP.


Assuntos
Aminoácido Oxirredutases/deficiência , Tecido Elástico , Prolapso de Órgão Pélvico , Vagina , Aminoácido Oxirredutases/metabolismo , Animais , Tecido Elástico/metabolismo , Tecido Elástico/patologia , Tecido Elástico/fisiopatologia , Feminino , Camundongos , Camundongos Knockout , Prolapso de Órgão Pélvico/genética , Prolapso de Órgão Pélvico/metabolismo , Prolapso de Órgão Pélvico/patologia , Prolapso de Órgão Pélvico/fisiopatologia , Vagina/metabolismo , Vagina/patologia , Vagina/fisiopatologia
7.
Physiol Rep ; 8(11): e14436, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32533648

RESUMO

Pelvic organ prolapse (POP) decreases quality of life for many women, but its pathophysiology is poorly understood. We have previously shown that Lysyl oxidase-like 1 knockout (Loxl1 KO) mice reliably prolapse with age and increased parity, similar to women. Both this model and clinical studies also indicate that altered elastin metabolism in pelvic floor tissues plays a role in POP manifestation, although it is unknown if this is a cause or effect. Using Loxl1 KO mice, we investigated the effects of genetic absence of Loxl1, vaginal parity, and presence of POP on the expression of genes and proteins key to the production and regulation of elastic matrix. Cultured cells isolated from vaginal explants of mice were assayed with Fastin for elastic matrix, as well as RT-PCR and Western blot for expression of genes and proteins important for elastin homeostasis. Elastin synthesis significantly decreased with absence of LOXL1 and increased with parity (p < .001), but not with POP. Cells from prolapsed mice expressed significantly decreased MMP-2 (p < .05) and increased TIMP-4 (p < .05). The results suggest changes to elastin structure rather than amounts in prolapsed mice as well as poor postpartum elastin turnover, resulting in accumulation of damaged elastic fibers leading to abnormal tropoelastin deposition. POP may thus, be the result of an inability to initiate the molecular mechanisms necessary to clear and replace damaged elastic matrix in pelvic floor tissues after vaginal birth.


Assuntos
Aminoácido Oxirredutases/metabolismo , Elastina/metabolismo , Prolapso de Órgão Pélvico/metabolismo , Vagina/metabolismo , Aminoácido Oxirredutases/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Homeostase , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vagina/citologia
8.
Acta Biomater ; 105: 180-190, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31982591

RESUMO

Intrinsically poor auto-regenerative repair of proteolytically-disrupted elastic matrix structures by resident SMCs in the wall of abdominal aortic aneurysms (AAAs) prevents growth arrest and regression of these wall expansions. Supporting their possible future use in a regenerative cell therapy for AAAs, in a prior study, we showed that bone marrow mesenchymal stem cell-derived Smooth Muscle Cells (BM-SMCs) secrete biological factors that have significant pro-elastogenic and anti-proteolytic effects on aneurysmal rat aortic SMCs (EaRASMCs) in non-contact co-cultures. We also identified one stable BM-SMC phenotype (cBM-SMC) generated by differentiating BM-MSCs on a 2D fibronectin substrate in the presence of PDGF (Platelet Derived Growth Factor) and TGF-ß1 (Transforming Growth Factor-ß1) that exhibited superior elastogenicity and pro-elastogenic/anti-proteolytic properties. In this study, we further investigated the ability of these cBM-SMCs to maintain these superior elastogenic properties in a 3D collagenous milieu alone and in co-culture with EaRASMC to evaluate their potential as an alternative cell source for cell therapy in AAA. Some of our key observations were higher contractility and greater amount of structurally intact elastin production in both standalone culture of cBM-SMCs as well as co-culture of cBM-SMCs with EaRASMCs as shown by VVG (Verhoeff-Van Gieson) staining and Pontamine Sky Blue labeling and lower MMP-9 protein expression in standalone culture in 3D collagenous environment. Our overall result indicates that cBM-SMCs possess the ability to provide elastogenic impetus in a 3D collagenous AAA milieu which is otherwise not conducive to elastogenesis. Therefore our study strongly suggest the utility of cBM-SMCs as a potential cell source for cell therapy to augment elastic matrix neo-assembly and fiber formation and attenuate proteolysis in a collagenous milieu that is evocative of the de-elasticized aneurysmal wall. STATEMENT OF SIGNIFICANCE: Abdominal aortic aneurysm (AAA) or ballooning of the aorta is one of the leading causes of cardiovascular disease (CVD) related death caused by significantly increased proteolytic activity in the aortic wall. Reversing pathophysiology of this condition is challenging due to intrinsically poor regeneration of elastin by aortic smooth muscle cells. Current management of AAA is limited to passive monitoring of the disease until it becomes large enough to receive surgical intervention and no drug based therapy currently exists. Cell based therapy can be a potential alternative treatment in this scenario because it provides elastogenic impetus to the aneurysmal SMCs, compensates for the dead SMCs and serves as a robust source of elastin while being delivered with minimal invasiveness. Hence this work will have significant impact in the field of tissue engineering and regenerative medicine.


Assuntos
Colágeno/farmacologia , Elasticidade , Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/citologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desmosina/metabolismo , Elastina/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fluorescência , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ratos Sprague-Dawley , Alicerces Teciduais/química
9.
Tissue Eng Part A ; 24(11-12): 979-989, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29264957

RESUMO

Abdominal aortic aneurysms (AAAs) are localized expansions of the abdominal aorta that grow slowly to rupture. AAA growth is driven by irreversible elastic matrix breakdown in the aorta wall by chronically upregulated matrix metalloproteases (MMPs). Since adult vascular smooth muscle cells (SMCs) poorly regenerate elastic matrix, we previously explored utility of bone marrow mesenchymal stem cells and SMCs derived therefrom (BM-SMCs) for this purpose. One specific differentiated phenotype (cBM-SMCs) generated on a fibronectin substrate in presence of exogenous transforming growth factor-ß and platelet-derived growth factor exhibited superior elastogenicity versus other phenotypes, and usefully provided proelastogenic and antiproteolytic stimuli to aneurysmal SMCs. Since in vivo cell therapy demands large cell inoculates, these derived SMCs must be propagated in vitro while maintaining their superior elastogenic, proelastogenic, and antiproteolytic characteristics. In this work, we thus investigated the culture conditions that must be provided to this propagation phase, which ensure that the differentiated SMCs maintain their phenotype and matrix regenerative benefits. Our results indicate that our BM-SMCs retain their phenotype in long-term culture even in the absence of differentiation growth factors and fibronectin substrate, but these conditions must be continued to be provided during postdifferentiation propagation if they are to maintain their superior elastic matrix deposition, crosslinking, and fiber formation properties. Our study, however, showed that cells propagated under these conditions exhibit higher expression of MMP-2, but favorably, no expression of elastolytic MMP-9. Hence, the study outcomes provide crucial guidelines to maintain phenotypic stability of cBM-SMCs during their propagation in two-dimensional culture before their delivery to the AAA wall for therapy.


Assuntos
Células-Tronco Mesenquimais/citologia , Miócitos de Músculo Liso/citologia , Animais , Aneurisma da Aorta Abdominal/terapia , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Músculo Liso Vascular/citologia , Ratos
10.
Acta Biomater ; 52: 171-186, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27884774

RESUMO

Arresting or regressing growth of abdominal aortic aneurysms (AAAs), localized expansions of the abdominal aorta are contingent on inhibiting chronically overexpressed matrix metalloproteases (MMPs)-2 and -9 that disrupt elastic matrix within the aortic wall, concurrent with providing a stimulus to augmenting inherently poor auto-regeneration of these matrix structures. In a recent study we demonstrated that localized, controlled and sustained delivery of doxycycline (DOX; a tetracycline-based antibiotic) from poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs), enhances elastic matrix deposition and MMP-inhibition at a fraction of the therapeutically effective oral dose. The surface functionalization of these NPs with cationic amphiphiles, which enhances their arterial uptake, was also shown to have pro-matrix regenerative and anti-MMP effects independent of the DOX. Based on the hypothesis that the incorporation of superparamagnetic iron oxide NPs (SPIONs) within these PLGA NPs would enhance their targetability to the AAA site under an applied external magnetic field, we sought to evaluate the functional effects of NPs co-encapsulating DOX and SPIONs (DOX-SPION NPs) on elastic matrix regeneration and MMP synthesis/activity in vitro within aneurysmal smooth muscle cell (EaRASMC) cultures. The DOX-SPION NPs were mobile under an applied external magnetic field, while enhancing elastic matrix deposition 1.5-2-fold and significantly inhibiting MMP-2 synthesis and MMP-2 and -9 activities, compared to NP-untreated control cultures. These results illustrate that the multifunctional benefits of NPs are maintained following SPION co-incorporation. Additionally, preliminary studies carried out demonstrated enhanced targetability of SPION-loaded NPs within proteolytically-disrupted porcine carotid arteries ex vivo, under the influence of an applied external magnetic field. Thus, this dual-agent loaded NP system proffers a potential non-surgical option for treating small growing AAAs, via controlled and sustained drug release from multifunctional, targetable nanocarriers. STATEMENT OF SIGNIFICANCE: Proactive screening of high risk elderly patients now enables early detection of abdominal aortic aneurysms (AAAs). There are no established drug-based therapeutic alternatives to surgery for AAAs, which is unsuitable for many elderly patients, and none which can achieve restore disrupted and lost elastic matrix in the AAA wall, which is essential to achieve growth arrest or regression. We have developed a first generation design of polymer nanoparticles (NPs) for AAA tissue localized delivery of doxycycline, a modified tetracycline drug at low micromolar doses at which it provides both pro-elastogenic and anti-proteolytic benefits that can augment elastic matrix regenerative repair. The nanocarriers themselves are also uniquely chemically functionalized on their surface to also provide them pro-elastin-regenerative & anti-matrix degradative properties. To provide an active driving force for efficient uptake of intra-lumenally infused NPs to the AAA wall, in this work, we have rendered our polymer NPs mobile in an applied magnetic field via co-incorporation of super-paramagnetic iron oxide NPs. We demonstrate that such modifications significantly improve wall uptake of the NPs with no significant changes to their physical properties and regenerative benefits. Such NPs can potentially stimulate structural repair in the AAA wall following one time infusion to delay or prevent AAA growth to rupture. The therapy can provide a non-surgical treatment option for high risk AAA patients.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Dextranos/administração & dosagem , Doxiciclina/administração & dosagem , Nanopartículas de Magnetita/administração & dosagem , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos da radiação , Regeneração/efeitos dos fármacos , Animais , Células Cultivadas , Preparações de Ação Retardada/química , Preparações de Ação Retardada/efeitos da radiação , Dextranos/efeitos da radiação , Doxiciclina/química , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/efeitos da radiação , Campos Magnéticos , Nanopartículas de Magnetita/efeitos da radiação , Masculino , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Nanocápsulas/efeitos da radiação , Doses de Radiação , Ratos , Ratos Sprague-Dawley , Regeneração/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA