Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rep Prog Phys ; 82(2): 024501, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30640724

RESUMO

In recent years there has been a growing interest in the use of plasmonic nanostructures for color generation, a technology that dates back to ancient times. Plasmonic structural colors have several attractive features but once the structures are prepared the colors are normally fixed. Lately, several concepts have emerged for actively tuning the colors, which opens up for many new potential applications, the most obvious being novel color displays. In this review we summarize recent progress in active control of plasmonic colors and evaluate them with respect to performance criteria for color displays. It is suggested that actively controlled plasmonic colors are generally less interesting for emissive displays but could be useful for new types of electrochromic devices relying on ambient light (electronic paper). Furthermore, there are several other potential applications such as images to be revealed on demand and colorimetric sensors.

2.
ACS Cent Sci ; 4(8): 1007-1014, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30159397

RESUMO

Control of molecular translocation through nanoscale apertures is of great interest for DNA sequencing, biomolecular filters, and new platforms for single molecule analysis. However, methods for controlling the permeability of nanopores are very limited. Here, we show how nanopores functionalized with poly(ethylene glycol) brushes, which fully prevent protein translocation, can be reversibly gated to an "open" state by binding of single IgG antibodies that disrupt the macromolecular barrier. On the basis of surface plasmon resonance data we propose a two-state model describing the antibody-polymer interaction kinetics. Reversibly (weakly) bound antibodies decrease the protein exclusion height while irreversibly (strongly) bound antibodies do not. Our results are further supported by fluorescence readout from pore arrays and high-speed atomic force microscopy on single pores. This type of dynamic barrier control on the nanoscale provides new possibilities for biomolecular separation and analysis.

3.
ACS Nano ; 12(10): 9958-9965, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30165019

RESUMO

Antibody-antigen interactions are complex events central to immune response, in vivo and in vitro diagnostics, and development of therapeutic substances. We developed an ultrastable single-molecule localized surface plasmon resonance (LSPR) sensing platform optimized for studying antibody-antigen interaction kinetics over very long time scales. The setup allowed us to perform equilibrium fluctuations analysis of the PEG/anti-PEG interaction. By time and frequency domain analysis, we demonstrate that reversible adsorption of monovalently bound anti-PEG antibodies is the dominant factor affecting the LSPR fluctuations. The results suggest that equilibrium fluctuation analysis can be an alternative to established methods for determination of interaction rates. In particular, the methodology is suited to analyze molecular systems whose properties change during the initial interaction phases, for example, due to mass transport limitations or, as demonstrated here, because the effective association rate constant varies with surface concentration of adsorbed molecules.


Assuntos
Anticorpos/imunologia , Antígenos/imunologia , Técnicas Biossensoriais , Nanopartículas/química , Adsorção , Reações Antígeno-Anticorpo , Cinética , Ressonância de Plasmônio de Superfície
4.
Anal Chem ; 90(12): 7458-7466, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29806449

RESUMO

Nanoplasmonic sensors have emerged as a promising measurement approach to track biomacromolecular interactions involving lipid membrane interfaces. By taking advantage of nanoscale fabrication capabilities, it is possible to design sensing platforms with various architectural configurations. Such capabilities open the door to fabricating lipid membrane-coated nanoplasmonic sensors with varying degrees of membrane curvature in order to understand how biomacromolecular interaction processes are influenced by membrane curvature. Herein, we employed an indirect nanoplasmonic sensing approach to characterize the fabrication of supported lipid bilayers (SLBs) on silica-coated nanowell and nanodisk sensing platforms and to investigate how membrane curvature influences membrane-peptide interactions by evaluating the corresponding measurement responses from different spectral signatures that are sensitive to specific regions of the sensor geometries. SLBs were prepared by the vesicle fusion method, as monitored in real-time by nanoplasmonic sensing measurements and further characterized by fluorescence recovery after photobleaching (FRAP) experiments. By resolving different spectral signatures in the nanoplasmonic sensing measurements, it was determined that peptide binding induces membrane disruption at positively curved membrane regions, while peptide binding without subsequent disruption was observed at planar and negatively curved regions. These findings are consistent with the peptide's known preference to selectively form pores in positively curved membranes, providing validation to the nanoplasmonic sensing approach and highlighting how the integration of nanoplasmonic sensors with different nanoscale architectures can be utilized to study the influence of membrane curvature on biomacromolecular interaction processes.


Assuntos
Estruturas da Membrana Celular/metabolismo , Substâncias Macromoleculares/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Membrana Celular/ultraestrutura , Recuperação de Fluorescência Após Fotodegradação , Bicamadas Lipídicas/metabolismo , Nanotecnologia/métodos , Peptídeos/metabolismo , Propriedades de Superfície
5.
Nanoscale ; 10(10): 4663-4669, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29468241

RESUMO

Polymer brushes are widely used to prevent the adsorption of proteins, but the mechanisms by which they operate have remained heavily debated for many decades. We show conclusive evidence that a polymer brush can be a remarkably strong kinetic barrier towards proteins by using poly(ethylene glycol) grafted to the sidewalls of pores in 30 nm thin gold films. Despite consisting of about 90% water, the free coils seal apertures up to 100 nm entirely with respect to serum protein translocation, as monitored label-free through the plasmonic activity of the nanopores. The conclusions are further supported by atomic force microscopy and fluorescence microscopy. A theoretical model indicates that the brush undergoes a morphology transition to a sealing state when the ratio between the extension and the radius of curvature is approximately 0.8. The brush-sealed pores represent a new type of ultrathin filter with potential applications in bioanalytical systems.


Assuntos
Nanoporos , Polietilenoglicóis/química , Polímeros/química , Proteínas/química , Adsorção , Ouro , Microscopia de Força Atômica , Microscopia de Fluorescência
6.
Nano Lett ; 17(11): 7033-7039, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29028347

RESUMO

Plasmonic color generation offers several advantages but is also limited by the cost and availability of noble metals like gold. In this work, we present color-tunable metasurfaces with high chromaticity and reflectivity consisting of an aluminum mirror, a dielectric spacer, and a plasmonic nanohole array in copper. Copper is shown to be an excellent alternative to gold when properly protected from oxidation and makes it possible to generate a wide RGB gamut covering 27% of the standard RGB. By patterning the metasurfaces into microscale pixel triplets, color photos can be well reproduced with high resolution over wafer-sized areas. Further, we demonstrate active modulation of the reflected intensity using an electrochromic conductive polymer deposited on top of the nanostructures by screen printing. This technology opens up for ultrathin and flexible reflective displays in full color, that is, plasmonic electronic paper, compatible with large-scale sustainable production.

7.
Sensors (Basel) ; 17(6)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632153

RESUMO

Plasmonic nanostructures are widely used for various sensing applications by monitoring changes in refractive index through optical spectroscopy or as substrates for surface enhanced Raman spectroscopy. However, in most practical situations conventional surface plasmon resonance is preferred for biomolecular interaction analysis because of its high resolution in surface coverage and the simple single-material planar interface. Still, plasmonic nanostructures may find unique sensing applications, for instance when the nanoscale geometry itself is of interest. This calls for new methods to prepare nanoscale particles and cavities with controllable dimensions and curvature. In this work, we present two types of plasmonic nanopores where the solid support underneath a nanohole array has been etched, thereby creating cavities denoted as 'nanowells' or 'nanocaves' depending on the degree of anisotropy (dry or wet etch). The refractometric sensitivity is shown to be enhanced upon removing the solid support because of an increased probing volume and a shift of the asymmetric plasmonic field towards the liquid side of the finite gold film. Furthermore, the structures exhibit different spectral changes upon binding inside the cavities compared to the gold surface, which means that the structures can be used for location-specific detection. Other sensing applications are also suggested.

8.
Light Sci Appl ; 6(8): e17042, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30167285

RESUMO

Localized surface plasmon resonance (LSPR) biosensing based on supported metal nanoparticles offers unparalleled possibilities for high-end miniaturization, multiplexing and high-throughput label-free molecular interaction analysis in real time when integrated within an opto-fluidic environment. However, such LSPR-sensing devices typically contain extremely large regions of dielectric materials that are open to molecular adsorption, which must be carefully blocked to avoid compromising the device readings. To address this issue, we made the support essentially invisible to the LSPR by carefully removing the dielectric material overlapping with the localized plasmonic fields through optimized wet-etching. The resulting LSPR substrate, which consists of gold nanodisks centered on narrow SiO2 pillars, exhibits markedly reduced vulnerability to nonspecific substrate adsorption, thus allowing, in an ideal case, the implementation of thicker and more efficient passivation layers. We demonstrate that this approach is effective and fully compatible with state-of-the-art multiplexed real-time biosensing technology and thus represents the ideal substrate design for high-throughput label-free biosensing systems with minimal sample consumption.

9.
Adv Mater ; 28(45): 9956-9960, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27670834

RESUMO

A flexible electronic paper in full color is realized by plasmonic metasurfaces with conjugated polymers. An ultrathin large-area electrochromic material is presented which provides high polarization-independent reflection, strong contrast, fast response time, and long-term stability. This technology opens up for new electronic readers and posters with ultralow power consumption.

10.
Analyst ; 141(12): 3803-10, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26867475

RESUMO

Plasmonic nanohole arrays are widely used for optical label-free molecular detection. An important factor for many applications is the diameter of the apertures. So far nanohole arrays with controllable diameters below 100 nm have not been demonstrated and it has not been systematically investigated how the diameter influences the optical properties. In this work we fine-tune the diameter in short range ordered nanohole arrays down to 50 nm. The experimental far field spectra show how the wavelength of maximum extinction remains unaffected while the transmission maximum blue shifts with smaller diameters. The near field is visualized by numerical simulations, showing a homogenous enhancement throughout the cylindrical void at the transmission maximum for diameters between 50 and 100 nm. For diameters below 50 nm plasmon excitation is no longer possible experimentally or by simulations. Further, we investigate the refractive index sensing capabilities of the smaller holes. As the diameter was reduced, the sensitivity in terms of resonance shift with bulk liquid refractive index was found to be unaltered. However, for the transmission maximum the sensitivity becomes more strongly localized to the hole interior. By directing molecular binding to the bottom of the holes we demonstrate how smaller holes enhance the sensitivity in terms of signal per molecule. A real-time detection limit well below one protein per nanohole is demonstrated. The smaller plasmonic nanoholes should be suitable for studies of molecules confined in small volumes and as mimics of biological nanopores.


Assuntos
Técnicas Biossensoriais , Nanoporos , Ressonância de Plasmônio de Superfície , Limite de Detecção , Refratometria
11.
Nanoscale ; 7(37): 15080-5, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26351000

RESUMO

The biochemical processes of cell membranes are sensitive to the geometry of the lipid bilayer. We show how plasmonic "nanowells" provide label-free real-time analysis of molecules on membranes with detection of preferential binding at negative curvature. It is demonstrated that norovirus accumulate in invaginations due to multivalent interactions with glycosphingolipids.


Assuntos
Técnicas Biossensoriais/métodos , Bicamadas Lipídicas/química , Nanoestruturas/química , Nanotecnologia/métodos , Dióxido de Silício/química
12.
Nano Lett ; 15(6): 4059-65, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25938263

RESUMO

Emission of photoexcited hot electrons from plasmonic metal nanostructures to semiconductors is key to a number of proposed nanophotonics technologies for solar harvesting, water splitting, photocatalysis, and a variety of optical sensing and photodetector applications. Favorable materials and catalytic properties make systems based on gold and TiO2 particularly interesting, but the internal photoemission efficiency for visible light is low because of the wide bandgap of the semiconductor. We investigated the incident photon-to-electron conversion efficiency of thin TiO2 films decorated with Au nanodisk antennas in an electrochemical circuit and found that incorporation of a Au mirror beneath the semiconductor amplified the photoresponse for light with wavelength λ = 500-950 nm by a factor 2-10 compared to identical structures lacking the mirror component. Classical electrodynamics simulations showed that the enhancement effect is caused by a favorable interplay between localized surface plasmon excitations and cavity modes that together amplify the light absorption in the Au/TiO2 interface. The experimentally determined internal quantum efficiency for hot electron transfer decreases monotonically with wavelength, similar to the probability for interband excitations with energy higher than the Schottky barrier obtained from a density functional theory band structure simulation of a thin Au/TiO2 slab.

13.
ACS Appl Mater Interfaces ; 7(14): 7505-15, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25812004

RESUMO

We present a new grafting-to method for resistant "non-fouling" poly(ethylene glycol) brushes, which is based on grafting of polymers with reactive end groups in 0.9 M Na2SO4 at room temperature. The grafting process, the resulting brushes, and the resistance toward biomolecular adsorption are investigated by surface plasmon resonance, quartz crystal microbalance, and atomic force microscopy. We determine both grafting density and thickness independently and use narrow molecular weight distributions which result in well-defined brushes. High density (e.g., 0.4 coils per nm(2) for 10 kDa) and thick (40 nm for 20 kDa) brushes are readily achieved that suppress adsorption from complete serum (10× dilution, exposure for 50 min) by up to 99% on gold (down to 4 ng/cm(2) protein coverage). The brushes outperform oligo(ethylene glycol) monolayers prepared on the same surfaces and analyzed in the same manner. The brush heights are in agreement with calculations based on a simple model similar to the de Gennes "strongly stretched" brush, where the height is proportional to molecular weight. This result has so far generally been considered to be possible only for brushes prepared by grafting-from. Our results are consistent with the theory that the brushes act as kinetic barriers rather than efficient prevention of adsorption at equilibrium. We suggest that the free energy barrier for passing the brush depends on both monomer concentration and thickness. The extraordinary simplicity of the method and good inert properties of the brushes should make our results widely applicable in biointerface science.


Assuntos
Materiais Biocompatíveis/química , Proteínas Sanguíneas/química , Polietilenoglicóis/química , Adsorção , Módulo de Elasticidade , Teste de Materiais , Peso Molecular , Estresse Mecânico , Resistência à Tração
14.
Analyst ; 140(14): 4748-59, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25675146

RESUMO

A review of sensing applications based on plasmonic nanopores is given. Many new types of plasmonic nanopores have recently been fabricated, including pores penetrating multilayers of thin films, using a great variety of fabrication techniques based on either serial nanolithography or self-assembly. One unique advantage with nanopores compared to other plasmonic sensors is that sample liquids can flow through the surface, which increases the rate of binding and improves the detection limit under certain conditions. Also, by utilizing the continuous metal films, electrical control can be implemented for electrochemistry, dielectrophoresis and resistive heating. Much effort is still spent on trying to improve sensor performance in various ways, but the literature uses inconsistent benchmark parameters. Recently plasmonic nanopores have been used to analyse targets of high clinical or academic interest. Although this is an important step forward, one should probably reflect upon whether the same results could have been achieved with another optical technique. Overall, this critical review suggests that the research field would benefit by focusing on applications where plasmonic nanopores truly can offer unique advantages over similar techniques.


Assuntos
Nanoporos , Microscopia Eletrônica , Óptica e Fotônica
15.
Nano Lett ; 14(6): 3544-9, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24807397

RESUMO

We have created a simple and efficient thermal plasmonic sensor platform by letting a DC current heat plasmonic nanohole arrays. The sensor can be used to determine thermodynamic parameters in addition to monitoring molecular reactions in real-time. As an application example, we use the thermal sensor to determine the kinetics and activation energy for desorption of thiol monolayers on gold. Further, the temperature of the metal can be measured optically by the spectral shift of the bonding surface plasmon mode (0.015 nm/K). We show that this resonance shift is caused by thermal lattice expansion, which reduces the plasma frequency of the metal. The sensor is also used to determine the thin film thermal expansion coefficient through a theoretical model for the expected resonance shift.

16.
Nano Lett ; 13(12): 6122-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24188470

RESUMO

We introduce a novel optical biosensing platform that exploits the asymmetry of nanostructures embedded in nanocavities, termed nanomenhirs. Upon oblique illumination using plane polarized white light, two plasmonic resonances attributable to the bases and the axes of the nanomenhirs emerge; these are used for location-specific sensing of membrane-binding events. Numerical simulations of the near field distributions confirmed the experimental results. As a proof-of-concept, we present a model biosensing experiment that exploits the dual-sensing capability, the size selectivity offered by the sensor geometry, and the possibility to separately biochemically modify the nanomenhirs and the nanocavities for the specific binding of lipid membrane structures to the nanomenhirs.


Assuntos
Técnicas Biossensoriais , Lipídeos/química , Nanoestruturas/química , Ouro/química , Luz , Membranas/química , Ressonância de Plasmônio de Superfície
17.
Nanophotonics ; 2(2): 83-101, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24159429

RESUMO

Optical biosensors based on surface plasmon resonance (SPR) in metallic thin films are currently standard tools for measuring molecular binding kinetics and affinities - an important task for biophysical studies and pharmaceutical development. Motivated by recent progress in the design and fabrication of metallic nanostructures, such as nanoparticles or nanoholes of various shapes, researchers have been pursuing a new generation of biosensors harnessing tailored plasmonic effects in these engineered nanostructures. Nanoplasmonic devices, while demanding nanofabrication, offer tunability with respect to sensor dimension and physical properties, thereby enabling novel biological interfacing opportunities and extreme miniaturization. Here we provide an integrated overview of refractometric biosensing with nanoplasmonic devices and highlight some recent examples of nanoplasmonic sensors capable of unique functions that are difficult to accomplish with conventional SPR. For example, since the local field strength and spatial distribution can be readily tuned by varying the shape and arrangement of nanostructures, biomolecular interactions can be controlled to occur in regions of high field strength. This may improve signal-to-noise and also enable sensing a small number of molecules. Furthermore, the nanoscale plasmonic sensor elements may, in combination with nanofabrication and materials-selective surface-modifications, make it possible to merge affinity biosensing with nanofluidic liquid handling.

18.
Nanoscale ; 5(11): 4966-75, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23632884

RESUMO

Simultaneous LSPR and electronic sensing of potential induced ion adsorption onto gold nanowire arrays is presented. The formation of a Stern layer upon applying an electrochemical potential generated a complex optical response. Simulation of a lossy atomic layer on the nanowire array using the Multiple Multipole Program (MMP) corresponded very well to the experimentally observed peak position, intensity, and radius of curvature changes. Additionally, a significant voltage-dependent change in the resistance of the gold nanowire array was observed during the controlled formation of the electrical double layer. The results demonstrated that an applied electrochemical potential induces measurable changes in the optical and electrical properties of the gold nanowire surface. This is the first demonstration of combined plasmonic and nanowire resistance-based sensing of a surface process in the literature.


Assuntos
Ouro/química , Nanofios/química , Adsorção , Íons/química , Ressonância de Plasmônio de Superfície
19.
ACS Nano ; 6(11): 10405-15, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23098107

RESUMO

We present the fabrication and optical characterization of plasmonic nanostructures consisting of nanohole arrays in two thin films, a metal and a dielectric. A novel method called mask-on-metal colloidal lithography is used to prepare high aspect ratio holes, providing efficient mass fabrication of stable structures with close to vertical walls and without the need for an adhesion layer under the metal. Our approach for understanding the transmission properties is based on solving the dispersions of the guided modes supported by the two films and calculating the influence from interference. The methodology is generic and can be extended to multilayered films. In particular, the influence from coupling to waveguide modes is discussed. We show that by rational design of structural dimensions it is possible to study only bonding surface plasmons and the associated hole transmission maximum. Further, numerical simulations with the multiple multipole program provide good agreement with experimental data and enable visualization of the asymmetric near-field distribution in the nanohole arrays, which is focused to the interior of the "nanowells". The refractometric sensitivity is evaluated experimentally both by liquid bulk changes and surface adsorption. We demonstrate how the localized mode provides reasonably good sensitivity in terms of resonance shift to molecular binding inside the voids. Importantly, high resolution sensing can be accomplished also for the surface plasmon mode, despite its extremely low figure of merit. This is accomplished by monitoring the coupling efficiency of light to plasmons instead of conventional sensing which is based on changes in plasmon energy. We suggest that these nanohole structures can be used for studying molecular transport through nanopores and the behavior of molecules confined in volumes of approximately one attoliter.


Assuntos
Coloides/química , Membranas Artificiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Modelos Químicos , Fotografação/métodos , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Luz , Espalhamento de Radiação
20.
Sensors (Basel) ; 12(3): 3018-36, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22736990

RESUMO

There is no doubt that the recent advances in nanotechnology have made it possible to realize a great variety of new sensors with signal transduction mechanisms utilizing physical phenomena at the nanoscale. Some examples are conductivity measurements in nanowires, deflection of cantilevers and spectroscopy of plasmonic nanoparticles. The fact that these techniques are based on the special properties of nanostructural entities provides for extreme sensor miniaturization since a single structural unit often can be used as transducer. This review discusses the advantages and problems with such small sensors, with focus on biosensing applications and label-free real-time analysis of liquid samples. Many aspects of sensor design are considered, such as thermodynamic and diffusion aspects on binding kinetics as well as multiplexing and noise issues. Still, all issues discussed are generic in the sense that the conclusions apply to practically all types of surface sensitive techniques. As a counterweight to the current research trend, it is argued that in many real world applications, better performance is achieved if the active sensor is larger than that in typical nanosensors. Although there are certain specific sensing applications where nanoscale transducers are necessary, it is argued herein that this represents a relatively rare situation. Instead, it is suggested that sensing on the microscale often offers a good compromise between utilizing some possible advantages of miniaturization while avoiding the complications. This means that ensemble measurements on multiple nanoscale sensors are preferable instead of utilizing a single transducer entity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA