Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 759, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914958

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide. Inhibitor of kappa B kinase interacting protein (IKBIP) has been reported to promote glioma progression, but its role in other cancers remains unclear. This study aimed to investigate the role of IKBIP and its underlying molecular mechanisms in ESCC. METHODS: The mRNA expression of IKBIP was analyzed using multiple cancer databases. Immunohistochemistry was performed to detect IKBIP protein expression in ESCC tissues and adjacent normal tissues, and Kaplan‒Meier survival and Cox regression analyses were carried out. The effects of IKBIP knockdown (or overexpression) on ESCC cells were detected by cell viability, cell migration, flow cytometry and Western blot assays. LY-294002 was used to validate the activation of the AKT signaling pathway by IKBIP. Finally, the role of IKBIP in ESCC was verified in a xenograft model. RESULTS: Both bioinformatics analysis and immunohistochemistry indicated that IKBIP expression in ESCC tissues was significantly increased and was associated with the prognosis of ESCC patients. In vitro experiments revealed that IKBIP knockdown significantly inhibited the proliferation and migration of ESCC cells, and induced cell apoptosis and G1/S phase arrest. Molecular mechanism results showed that the AKT signaling pathway was further activated after IKBIP overexpression, thereby increasing the proliferation and migration abilities of ESCC cells. In vivo study confirmed that IKBIP promoted the initiation and development of ESCC tumors in mice. CONCLUSIONS: IKBIP plays a tumor-promoting role in ESCC and may serve as a predictive biomarker and a potential therapeutic target for ESCC.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biomedicines ; 11(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38137415

RESUMO

KDF1 has been reported to be correlated with carcinogenesis. However, its role and mechanism are far from clear. To explore the possible role and underlying mechanism of KDF1 in lung adenocarcinoma (LUAD), we investigated KDF1 expression in LUAD tissues and the influence of KDF1 in the phenotype of LUAD cells (A549 and PC-9) as well as the underlying mechanism. Compared to non-tumor lung epithelial cells, KDF1 was upregulated in the cancer cells of the majority of LUAD patients, and its expression was correlated with tumor size. Patients with enhanced KDF1 in cancer cells (compared with paired adjacent non-neoplastic lung epithelial cells) had shorter overall survival than patients with no increased KDF1 in cancer cells. Knockdown of KDF1 inhibited the migration, proliferation and invasion of LUAD cells in vitro. And overexpression of KDF1 increased the growth of the subcutaneous tumors in mice. In terms of molecular mechanisms, overexpression of KDF1 induced the expression of AKT, p-AKT and p-STAT3. In KDF1-overexpressing A549 cells, inhibition of the STAT3 pathway decreased the level of AKT and p-AKT, whereas inhibition of the AKT pathway had no effect on the activation of STAT3. Inhibition of STAT3 or AKT pathways reversed the promoting effects of KDF1 overexpression on the LUAD cell phenotype and STAT3 inhibition appeared to have a better effect. Finally, in the cancer cells of LUAD tumor samples, the KDF1 level was observed to correlate positively with the level of p-STAT3. All these findings suggest that KDF1, which activates STAT3 and the downstream AKT pathway in LUAD, acts as a tumor-promoting factor and may represent a therapeutic target.

3.
Front Mol Biosci ; 9: 889403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860357

RESUMO

Cancer is caused by the destruction or mutation of cellular genetic materials induced by environmental or genetic factors. It is defined by uncontrolled cell proliferation and abnormality of the apoptotic pathways. The majority of human malignancies are characterized by distant metastasis and dissemination. Currently, the most common means of cancer treatment include surgery, radiotherapy, and chemotherapy, which usually damage healthy cells and cause toxicity in patients. Targeted therapy is an effective tumor treatment method with few side effects. At present, some targeted therapeutic drugs have achieved encouraging results in clinical studies, but finding an effective solution to improve the targeting and delivery efficiency of these drugs remains a challenge. In recent years, oncolytic viruses (OVs) have been used to direct the tumor-targeted therapy or immunotherapy. Newcastle disease virus (NDV) is a solid oncolytic agent capable of directly killing tumor cells and increasing tumor antigen exposure. Simultaneously, NDV can trigger the proliferation of tumor-specific immune cells and thus improve the therapeutic efficacy of NDV in cancer. Based on NDV's inherent oncolytic activity and the stimulation of antitumor immune responses, the combination of NDV and other tumor therapy approaches can improve the antitumor efficacy while reducing drug toxicity, indicating a broad application potential. We discussed the biological properties of NDV, the antitumor molecular mechanisms of oncolytic NDV, and its application in the field of tumor therapy in this review. Furthermore, we presented new insights into the challenges that NDV will confront and suggestions for increasing NDV's therapeutic efficacy in cancer.

4.
World J Stem Cells ; 14(1): 41-53, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35126827

RESUMO

The transforming growth factor (TGF)-ß signaling pathway controls many cellular processes, including proliferation, differentiation, and apoptosis. Abnormalities in the TGF-ß signaling pathway and its components are closely related to the occurrence of many human diseases, including cancer. Mothers against decapentaplegic homolog 4 (Smad4), also known as deleted in pancreatic cancer locus 4, is a typical tumor suppressor candidate gene locating at q21.1 of human chromosome 18 and the common mediator of the TGF-ß/Smad and bone morphogenetic protein/Smad signaling pathways. It is believed that Smad4 inactivation correlates with the development of tumors and stem cell fate decisions. Smad4 also interacts with cytokines, miRNAs, and other signaling pathways, jointly regulating cell behavior. However, the regulatory function of Smad4 in tumorigenesis, stem cells, and drug resistance is currently controversial. In addition, Smad4 represents an attractive therapeutic target for cancer. Elucidating the specific role of Smad4 is important for understanding the mechanism of tumorigenesis and cancer treatment. Here, we review the identification and characterization of Smad4, the canonical TGF-ß/Smad pathway, as well as the multiple roles of Smad4 in tumorigenesis, stem cells, and drug resistance. Furthermore, we provide novel insights into the prospects of Smad4-targeted cancer therapy and the challenges that it will face in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA