Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(9): 2337-2340, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691713

RESUMO

In this Letter, we propose and demonstrate an integrated polarizer on thin film lithium niobate (TFLN). The polarizer consists of a width-tapered 180° Euler bending waveguide featuring thin thickness and bilevel mode convertors with silica cladding. Notably, the TE0 mode is efficiently confined in the waveguide, while the TM0 mode confronts significant bending losses. The measurements reveal that the excess loss remains below 1.5 dB, and the extinction ratio surpasses 19 dB within a working bandwidth spanning from 1480 to 1578 nm. The proposed polarizer holds considerable promise for enhancing polarization handling within TFLN photonic circuits.

2.
Opt Lett ; 49(9): 2517-2520, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691758

RESUMO

A multimode interference (MMI) coupler is one of the basic components for photonic integrated circuits. However, MMI couplers realized by conventional waveguides are polarization sensitive, which is undesired for many applications, such as optical switches and communications. In this Letter, we propose a polarization-insensitive MMI coupler on a 220-nm silicon-on-insulator platform by constructing different effective interference lengths for TE and TM modes assisted with subwavelength grating structures. The designed MMI coupler shows an excess loss of <0.24(0.43) dB and a power imbalance of <0.6(0.5) dB for the TE(TM) mode over the wavelength range of 1.5-1.6 µm in theory. Experimentally, the fabricated MMI exhibits low excess loss <0.64(0.53) dB and power imbalance <1(0.85) dB for the TE(TM) mode over a wavelength range of 1.55-1.61 µm.

3.
Opt Lett ; 49(10): 2537-2540, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748099

RESUMO

In this Letter, we propose and demonstrate a fiber-to-chip edge coupler (EC) on an x-cut thin film lithium niobate (TFLN) for polarization-insensitive (PI) coupling. The EC consists of three width-tapered full-etched waveguides with silica cladding and matches well with a single-mode fiber (SMF). The measured results show that the minimum coupling losses for TE0/TM0 modes remain to be 0.9 dB/1.1 dB per facet, and the polarization dependent loss (PDL) is <0.5 dB over the wavelength range from 1260 to 1340 nm. Moreover, the EC features large misalignment tolerance of ±2 µm in the Z direction and ±1.5 µm in the X direction for both polarizations for a 1 dB penalty. To the best of our knowledge, this is the first realized O-band edge coupler on TFLN with SMF. The proposed device shows promising potential for integration into TFLN polarization diversity devices.

4.
Opt Lett ; 49(8): 1969-1972, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621053

RESUMO

Photonic integrated circuits have garnered significant attention and experienced rapid development in recent years. To provide fundamental building blocks for scalable optical classical and quantum information processing, one important direction is to develop cryogenic compatible photonic integrated devices. Here, we prepare one optical filter on a lithium-niobate-on-insulator (LNOI) platform based on a multimode waveguide grating and verify its availability at temperature from 295 to 7 K. We find that the integrated optical filter still shows good quality under cryogenic conditions, and the shift of the working wavelength at different temperatures is well explained by the index variation of the material. These results advance LNOI integrated optical devices in applications under cryogenic conditions.

5.
Opt Express ; 32(5): 7774-7782, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439450

RESUMO

Using cascaded Mach-Zehnder interferometers (CMZIs) provides an attractive option for realizing coarse wavelength-division (de)multiplexing (CWDM) filters with low losses, low crosstalk, flat tops, and high scalability. However, they usually have large footprints and insufficient fabrication tolerances, due to the inferior performance of conventional directional couplers (DCs) used for MZIs. Here, a four-channel CMZI wavelength-division (de)multiplexer based on novel Bezier-shape DCs with compact footprints, broad bandwidths and decent fabrication tolerances. For the fabricated (de)multiplexer with 20-nm channel spacing, the excess loss is less than 0.5 dB and the crosstalk is lower than -19.5 dB in the 1-dB bandwidth of 12.8 nm. For the case with a core-width deviation of ±20 nm, the device still performs very well with low losses and low crosstalk. Compared to the state-of-the-art MZI-based CWDM filters, the present device has slightly high performances and a footprint of 0.012 mm2 shrunk greatly by ∼3-folds. This work can be extended for more channels and other material platforms.

6.
J Cosmet Dermatol ; 23(1): 244-255, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37430475

RESUMO

BACKGROUND: Frankincense volatile oil (FVO) has long been considered a side product in pharmaceutical industry since frankincense of large molecular weight is the prime target. However, the volatile oil recycled in the extract process might contain a series of functional actives, serving as promising ingredients in the cosmetic field. METHODS: Gas chromatography-mass spectrometer was utilized to determine the species and amount of active ingredients in FVO. Subsequently, zebrafish models were used to evaluate pigmentation inhibition, ROS elimination and neutrophil activation. In vitro DPPH test was also conducted to consolidate the anti-oxidation efficacy. Based on the test results, network pharmacology was incorporated, where GO and KEGG enrichment analyses were performed to discover the interrelations between active ingredients. RESULTS: About 40 actives molecules were identified, including incensole, acetate incensole, and acetate incensole oxide. The FVO demonstrated great depigmentation activity by suppressing melanin synthesis, as well as providing free radical scavenging and anti-inflammation effect. In network pharmacology analysis, 192 intersected targets were identified. By enrichment analysis and network construction, a series of whitening signal pathways, and hub genes, containing STAT3,MAPK3,MAPK1 were identified. CONCLUSION: The current study quantified the components of FVO, evaluated its efficacy in skin depigmentation, and give pioneering insights on the possible mechanism. The results confirmed that the FVO could serve as whitening agent in topical uses.


Assuntos
Franquincenso , Óleos Voláteis , Animais , Óleos Voláteis/farmacologia , Franquincenso/química , Peixe-Zebra , Pigmentação , Acetatos
7.
Opt Lett ; 48(23): 6092-6095, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039199

RESUMO

We propose and experimentally demonstrate a polarization multiplexed silicon optical phased array (OPA) with a wide scanning range. The two polarization states share the same power splitter tree and the phase shifter array. A polarization switch is introduced in front of the power splitter tree to manipulate the polarization state of the light in OPA. Through a polarization splitter-rotator (PSR), the light of two polarization states propagates into the superlattice grating antenna array. The wavelength tuning efficiency could be doubled by optimizing the parameters of the waveguide grating. We demonstrate the scheme on the commonly used 220 nm silicon-on-insulator (SOI) platform. Experimental results indicate that the 24.8° vertical scanning range could be realized with a high wavelength tuning efficiency of 0.31°/nm. The measured field of view (FOV) is 24.8 × 60°.

8.
Light Sci Appl ; 12(1): 217, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666829
9.
Opt Lett ; 48(17): 4653-4656, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656578

RESUMO

Low-loss and energy-efficient phase shifters are an effective tool to reduce the power consumption of large-scale photonic integrated circuits. In this work, a low-loss and power-efficient thermo-optic phase shifter has been demonstrated on the silicon-on-insulator platform. The multimode spiral waveguide is optimized to obtain lower power consumption and low cross talk. The waveguide width is beyond the single-mode region in consideration of low propagation loss. The optimized ultra-low loss 180° Bezier bends are used to further reduce the bending loss. The experimental results show that the excess loss of the phase shifter is only 0.36 dB at 1550-nm wavelength and the power consumption is 4.87 mW/π.

10.
Opt Lett ; 48(19): 4961-4964, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773360

RESUMO

Integrated optical filters are key components in various photonic integrated circuits for applications of communication, spectroscopy, etc. The dichroic filters can be flexibly cascaded to construct filters with various channel numbers and bandwidths. Therefore, the development of high-performance and compact dichroic filters is crucial. In this work, we develop the dichroic filters with 1.49/1.55-µm channels by an inverse design. Benefiting from a search-space-dimension control strategy and advanced optimization algorithm, our efficient design method results in two high-performance dichroic filters without and with subwavelength gratings (SWGs). The comparison suggests that SWGs in filters can be useful for loss reduction and footprint compression by dispersion engineering. The developed dichroic filter with SWGs exhibits measured bandwidths of 26/29 nm, excess losses of < 0.5 dB, and crosstalks of <-10 dB with a compact footprint of 2.5 × 22.0 µm2. It has advantages in performance or compactness compared to the previously reported counterparts. A triplexer with a footprint of 10.5 × 117 µm2 is developed based on the dichroic filters, also showing decent overall performance and compactness.

11.
Science ; 381(6654): 221-226, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440652

RESUMO

Quantum networks provide the framework for quantum communication, clock synchronization, distributed quantum computing, and sensing. Implementing large-scale and practical quantum networks relies on the development of scalable architecture and integrated hardware that can coherently interconnect many remote quantum nodes by sharing multidimensional entanglement through complex-medium quantum channels. We demonstrate a multichip multidimensional quantum entanglement network based on mass-manufacturable integrated-nanophotonic quantum node chips fabricated on a silicon wafer by means of complementary metal-oxide-semiconductor processes. Using hybrid multiplexing, we show that multiple multidimensional entangled states can be distributed across multiple chips connected by few-mode fibers. We developed a technique that can efficiently retrieve multidimensional entanglement in complex-medium quantum channels, which is important for practical uses. Our work demonstrates the enabling capabilities of realizing large-scale practical chip-based quantum entanglement networks.

12.
Opt Express ; 31(7): 11423-11430, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155777

RESUMO

A grating lobe-free silicon optical phased array with large field of view is demonstrated. Antennas with periodically bending modulation are spaced at half wavelength or less. The experimental results show that the crosstalk between adjacent waveguides is negligible at 1550 nm wavelength. Additionally, to reduce the optical reflection caused by the sudden change of refractive index at the output antenna of the phased array, tapered antennas are added to the output end face so that more light will be coupled into the free space. The fabricated optical phased array shows a field of view of 120° without any grating lobes.

13.
Nano Lett ; 23(9): 3731-3738, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37097286

RESUMO

Ultrafast interfacing of electrical and optical signals at the nanoscale is highly desired for on-chip applications including optical interconnects and data processing devices. Here, we report electrically driven nanoscale optical sources based on metal-insulator-graphene tunnel junctions (MIG-TJs), featuring waveguided output with broadband spectral characteristics. Electrically driven inelastic tunneling in a MIG-TJ, realized by integrating a silver nanowire with graphene, provides broadband excitation of plasmonic modes in the junction with propagation lengths of several micrometers (∼10 times larger than that for metal-insulator-metal junctions), which therefore propagate toward the junction edge with low loss and couple to the nanowire waveguide with an efficiency of ∼70% (∼1000 times higher than that for metal-insulator-metal junctions). Alternatively, lateral coupling of the MIG-TJ to a semiconductor nanowire provides a platform for efficient outcoupling of electrically driven plasmonic signals to low-loss photonic waveguides, showing potential for applications at various integration levels.

14.
Opt Express ; 30(24): 44029-44038, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523087

RESUMO

Optical phased array (OPA) based on silicon photonics is considered as a promising candidate for realizing solid-state beam steering. However, the high refractive index contrast of the silicon waveguides leads to conventional silicon based OPA suffering from large random phase errors, which require complex post-processing such as time-consuming phase calibration. We propose and demonstrate a calibration-free silicon OPA with optimized optical waveguides width as well as the compact 90° waveguide bends beyond the single mode regime. By using grouped cascaded phase shifters, it is able to reduce the number of control electrodes from N to log2(N). A 16-channel OPA has been demonstrated with continuous beam steering over the field of view controlled by only four control voltages without any calibration.

15.
Adv Mater ; : e2207301, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36524445

RESUMO

Bright and efficient deep-red light-emitting diodes (LEDs) are important for applications in medical therapy and biological imaging due to the high penetration of deep-red photons into human tissues. Metal-halide perovskites have potential to achieve bright and efficient electroluminescence due to their favorable optoelectronic properties. However, efficient and bright perovskite-based deep-red LEDs have not been achieved yet, due to either Auger recombination in low-dimensional perovskites or trap-assisted nonradiative recombination in 3D perovskites. Here, a lateral Cs4 PbI6 /FAx Cs1- x PbI3 (0D/3D) heterostructure that can enable efficient deep-red perovskite LEDs at very high brightness is demonstrated. The Cs4 PbI6 can facilitate the growth of low-defect FAx Cs1- x PbI3 , and act as low-refractive-index grids, which can simultaneously reduce nonradiative recombination and enhance light extraction. This device reaches a peak external quantum efficiency of 21.0% at a photon flux of 1.75 × 1021 m-2 s-1 , which is almost two orders of magnitude higher than that of reported high-efficiency deep-red perovskite LEDs. Theses LEDs are suitable for pulse oximeters, showing an error <2% of blood oxygen saturation compared with commercial oximeters.

16.
Opt Express ; 30(14): 24747-24761, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237021

RESUMO

Integrated optical tunable filters are key components for a wide spectrum of applications, including optical communications and interconnects, spectral analysis, and tunable light sources, among others. Compared with their thermo-optic counterparts, integrated acousto-optic (AO) tunable filters provide a unique approach to achieve superior performance, including ultrawide continuous tuning ranges of hundreds of nm, low power consumption of sub-mW and fast tuning speed of sub-µs. Based on suspended one-dimensional (1D) AO waveguides in the collinear configuration, we propose and theoretically investigate an innovative family of integrated AO tunable filters (AOTFs) on thin-film lithium niobate. The AO waveguides perform as tunable wavelength-selective narrow-band polarization rotators, where highly efficient conversion between co-propagating TE0 and TM0 modes is enabled by the torsional acoustic A1 mode, which can be selectively excited by a novel antisymmetric wavefront interdigital transducer. Furthermore, we systematically and quantitatively explore the possibilities of exciting modulated acoustic waves, which contain multiple frequency components, along the AO waveguide to achieve independently reconfigurable multi-band operations, with tunable time-variant spectral shapes. By incorporating a complete set of ultrawide-band polarization-handling components, we have proposed and theoretically investigated several representative monolithic AOTF configurations, featuring different arrangements of single or cascaded identical AO waveguides. One of the present AOTF designs exhibits a theoretical linewidth of ∼8 nm (∼4 nm), a sidelobe suppression ratio of ∼75 dB, and theoretically no excess loss at the center wavelength of 1550 nm (1310 nm), with an ultrawide tuning range of 1.25-1.65 µm (from O-band to L-band), a fast tuning speed of 0.14 µs, and a low power consumption of a few mW.

17.
Opt Express ; 30(14): 25308-25317, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237063

RESUMO

Electro-optic (EO) modulators with a high modulation bandwidth are indispensable parts of an optical interconnect system. A key requirement for an energy-efficient EO modulator is the low drive voltage, which can be provided using a standard complementary metal oxide semiconductor circuity without an amplifying driver. Thin-film lithium niobate has emerged as a new promising platform, and shown its capable of achieving driverless and high-speed EO modulators. In this paper, we report a compact high-performance modulator based on the thin-film lithium niobate platform on a silicon substrate. The periodic capacitively loaded travelling-wave electrode is employed to achieve a large modulation bandwidth and a low drive voltage, which can support a driverless single-lane 100Gbaud operation. The folded modulation section design also helps to reduce the device length by almost two thirds. The fabricated device represents a large EO bandwidth of 45GHz with a half-wave voltage of 0.7V. The driverless transmission of a 100Gbaud 4-level pulse amplitude modulation signal is demonstrated with a power consumption of 4.49fj/bit and a bit-error rate below the KP4 forward-error correction threshold of 2.4×10-4.

18.
Opt Express ; 30(12): 20839-20846, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224819

RESUMO

Photonic crystal (PhC) cavities with high Q factor and low volume have been applied in nonlinear, electro-optic and acoustic-optic devices due to the enhancement of the light-matter interactions. However, there are few devices and research on LiNbO3 (LN) PhC cavities due to the difficulty in making hyperfine structures on LN platform. In this work, we propose a PhC nanobeam cavity on the etchless x-cut LiNbO3-On-Insulator (LNOI). The fabrication-friendly device has been designed based on photonic bound states in the continuum (BICs) exhibiting a high Q factor of over 10,000 with the device length of only about 100 µm. Utilizing the electro-optical effect γ13 of LN, we demonstrate an ultra-compact electro-optic modulator based on the PhC nanobeam cavities, which has the modulation efficiency of 1.5 pm/V and the 3 dB bandwidth of 28 GHz.

19.
Opt Express ; 30(19): 34140-34148, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242434

RESUMO

A high-performance optical filter is proposed and realized with multimode waveguide grating (MWG) and two-mode multiplexers on the x-cut lithium-niobate-on-insulator (LNOI) platform for the first time, to the best of our knowledge. The present optical filter is designed appropriately to avoid material anisotropy as well as mode hybridness, and has a low excess loss of 0.05 dB and a high sidelobe suppression ratio (SLSR) of 32 dB in theory with Gaussian apodization. The fabricated filters show a box-like response with 1-dB bandwidth of 6-23 nm, excess loss of ∼0.15 dB, sidelobe suppression ratio of >26 dB. The device performance is further improved with a sidelobe suppression ratio as high as 48 dB and a low excess loss of ∼0.25 dB by cascading two identical MWGs.

20.
Opt Express ; 30(10): 16362-16373, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221480

RESUMO

Low-loss optical waveguides are highly desired for nonlinear photonics such as four-wave mixing (FWM), optical parametric amplification, and pulse shaping. In this work, low-loss silicon photonic spiral waveguides beyond the single-mode regime are proposed and demonstrated for realizing an enhanced FWM process. In particular, the designed 2-µm-wide silicon photonic waveguides are fabricated with standard foundry processes and have a propagation loss as low as ∼0.28 dB/cm due to the reduced light-matter interaction at the waveguide sidewalls. In the experiments, strong FWM effect is achieved with a high conversion efficiency of -8.52 dB in a 2-µm-wide and 20-cm-long silicon photonic waveguide spiral, and eight new wavelengths are generated with the pump power of ∼80 mW (corresponding to a low power density of ∼195 mW/µm2). In contrast, the FWM efficiency for the 0.45-µm-wide waveguide spiral is around -15.4 dB, which is much lower than that for the 2-µm-wide waveguide spiral. It can be seen that silicon photonics beyond the singlemode regime opens a new avenue for on-chip nonlinear photonics and will bring new opportunities for nonlinear photonic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA