Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 7): 127341, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37852400

RESUMO

The elaborate interplay of coding and noncoding factors governs muscle growth and development. Here, we reported a mutual activation between long noncoding RNA (lncRNA) H19 and MyoD (myogenic determination gene number 1) in the muscle process. We successfully cloned the two isoforms of goat H19, which were significantly enriched and positively correlated with MyoD transcripts in skeletal muscles or differentiating muscle satellite cells (MuSCs). To systematically screen genes altered by H19, we performed RNA-seq using cDNA libraries of differentiating H19-deficiency MuSCs and consequently anchored MyoD as the critical genes in mediating H19 function. Intriguingly, some transcripts of MyoD and H19 overlapped in the cytoplasm, which was dramatically damaged when the core complementary nucleotides were mutated. Meanwhile, MyoD RNA successfully pulled down H19 in MS2-RIP experiments. Furthermore, HuR could bind both H19 and MyoD transcripts, while H19 or its truncated mutants successfully stabilized MyoD mRNA, with or without HuR deficiency. In turn, novel functional MyoD protein-binding sites were identified in the promoter and exons of the H19 gene. Our results suggest that MyoD activates H19 transcriptionally, and RNA-RNA hybridization is critical for H19-promoted MyoD expression, which extends our knowledge of the hierarchy of regulatory networks in muscle growth.


Assuntos
RNA Longo não Codificante , Células Satélites de Músculo Esquelético , Animais , Células Satélites de Músculo Esquelético/metabolismo , Cabras/genética , Cabras/metabolismo , Diferenciação Celular/genética , Músculo Esquelético/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762418

RESUMO

The development of mammalian skeletal muscle is a highly complex process involving multiple molecular interactions. As a prevalent RNA modification, N6-methyladenosine (m6A) regulates the expression of target genes to affect mammalian development. Nevertheless, it remains unclear how m6A participates in the development of goat muscle. In this study, methyltransferase 3 (METTL3) was significantly enriched in goat longissimus dorsi (LD) tissue. In addition, the global m6A modification level and differentiation of skeletal muscle satellite cells (MuSCs) were regulated by METTL3. By performing mRNA-seq analysis, 8050 candidate genes exhibited significant changes in expression level after the knockdown of METTL3 in MuSCs. Additionally, methylated RNA immunoprecipitation sequencing (MeRIP-seq) illustrated that myocyte enhancer factor 2c (MEF2C) mRNA contained m6A modification. Further experiments demonstrated that METTL3 enhanced the differentiation of MuSCs by upregulating m6A levels and expression of MEF2C. Moreover, the m6A reader YTH N6-methyladenosine RNA binding protein C1 (YTHDC1) was bound and stabilized to MEF2C mRNA. The present study reveals that METTL3 enhances myogenic differentiation in MuSCs by regulating MEF2C and provides evidence of a post-transcriptional mechanism in the development of goat skeletal muscle.

3.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511183

RESUMO

Diarrhea is associated with gut microbiota, immunity, and metabolic alterations in goat kids and lambs. This study used 28 lambs (11 healthy and 17 diarrheic) and 20 goat kids (10 healthy and 10 diarrheic) to investigate the association between diarrhea occurrence and changes in gut microbiota, metabolism, and immunity in goat kids and lambs. The results revealed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla in goat kids and lambs. In addition, Enterobacteriaceae and Lachnospiraceae families were identified in both diarrheic goat kids and lambs. Furthermore, functional prediction of microbiota showed that it was involved in cell motility and cancer pathways. The identified differential metabolites were implicated in the bile secretion pathway. Lambs had significant differences in immunoglobulin G (IgG), immunoglobulin M (IgM), interleukin-1ß (IL-1ß), and tumor necrosis factor-alpha (TNF-α) compared to goat kids. IgG and IL-1ß were positively correlated to Patescibacteria, Clostridiaceae, and unclassified_Muribaculaceae in both diarrheic goat kids and lambs. In addition, weighted gene co-expression network analysis (WGCNA) revealed that the MEgreen module was positively associated with IgG, IgM, IL-1ß, TNF-α, and triglyceride (TG). In conclusion, our results characterized the gut microbiota, metabolism, and immune status of lambs and goat kids suffering from diarrhea.


Assuntos
Microbioma Gastrointestinal , Ovinos , Animais , RNA Ribossômico 16S/genética , Fator de Necrose Tumoral alfa , Diarreia/microbiologia , Cabras , Metabolômica , Imunoglobulina G
4.
Int J Biol Macromol ; 245: 125465, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37355065

RESUMO

Brown and beige adipose thermogenesis are important for newborn mammals to maintain their body temperature. In addition, these thermogenic fats are regulated by multiple molecular interactions. How the long non-coding RNAs (lncRNAs) regulate adipose thermogenesis in newborn mammals upon cold exposure remains unexplored. Here, we identified lncRNAs induced by cold exposure in brown adipose tissue (BAT) of newborn goats and found that lncDGAT2 was enriched in BAT after cold exposure. Functional studies revealed that lncDGAT2 promoted brown and white adipocyte differentiation as well as thermogenic gene expression. Additionally, PRDM4 directly bound the lncDGAT2 promoter to activate the transcription of lncDGAT2 and the PRDM4-lncDGAT2 axis was essential for the brown adipocyte thermogenic gene program. These findings provide evidence for lncRNA and transcription factor regulatory functions in controlling adipose thermogenesis and energy metabolism of newborn goats.


Assuntos
Cabras , RNA Longo não Codificante , Animais , Cabras/genética , Cabras/metabolismo , RNA Longo não Codificante/genética , Tecido Adiposo Marrom/metabolismo , Adipócitos Marrons/metabolismo , Fatores de Transcrição/genética , Termogênese/genética , Tecido Adiposo Branco/metabolismo , Temperatura Baixa
5.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176056

RESUMO

Muscle growth and injury-induced regeneration are controlled by skeletal muscle satellite cells (MuSCs) through myogenesis in postnatal animals. Meanwhile, myogenesis is accompanied by mitochondrial function and enzyme activity. Nevertheless, the underlying molecular mechanisms involving non-coding RNAs including circular RNAs (circRNAs) and microRNAs (miRNAs) remain largely unsolved. Here, we explored the myogenic roles of miR-145-3p and MYBL1 on muscle development and mitochondrial mass. We noticed that overexpression of miR-145-3p inhibited MuSCs proliferation and reduced the number of viable cells. Meanwhile, deficiency of miR-145-3p caused by LNAantimiR-145-3p or an inhibitor retarded the differentiation of MuSCs. miR-145-3p altered the mitochondrial mass in MuSCs. Moreover, miR-145-3p targeted and negatively regulated the expression of CDR1as and MYBL1. The knockdown of the MYBL1 using ASO-2'MOE modification simulated the inhibitory function of miR-145-3p on cell proliferation. Additionally, MYBL1 mediated the regulation of miR-145-3p on Vexin, VCPIP1, COX1, COX2, and Pax7. These imply that CDR1as/miR-145-3p/MYBL1/COX1, COX2, VCPIP1/Vexin expression at least partly results in a reduction in mitochondrial mass and MuSCs proliferation. These novel findings confirm the importance of mitochondrial mass during myogenesis and the boosting of muscle/meat development in mammals.


Assuntos
Cabras , MicroRNAs , Animais , Cabras/genética , Cabras/metabolismo , Ciclo-Oxigenase 2 , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/genética
6.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047345

RESUMO

The long non-coding RNAs (lncRNAs) are emerging as essential regulators of the growth and development of skeletal muscles. However, little is known about the expression profiles of lncRNAs during the proliferation and differentiation of skeletal muscle satellite cells (MuSCs) in goats. In this study, we investigate potential regulatory lncRNAs that govern muscle development by performing lncRNA expression profiling analysis during the proliferation (cultured in the growth medium, GM) and differentiation (cultured in the differentiation medium, DM1/DM5) of MuSCs. In total, 1001 lncRNAs were identified in MuSC samples, and 314 differentially expressed (DE) (FDR < 0.05, |log2FC| > 1) lncRNAs were screened by pairwise comparisons from three comparison groups (GM-vs-DM1, GM-vs-DM5, DM1-vs-DM5). Moreover, we identified the cis-, trans-, and antisense-regulatory target genes of DE lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that these target genes were significantly enriched in muscle development-related GO terms and KEGG pathways. In addition, the network of interactions between DE lncRNAs and their target genes was identified, which included well-known myogenesis regulators such as Myogenic differentiation 1 (MyoD), Myogenin (MyoG), and Myosin heavy chain (MyHC). Meanwhile, competing endogenous RNA (ceRNA) network analysis showed that 237 DE lncRNAs could bind to 329 microRNAs (miRNAs), while miRNAs could target 564 mRNAs. Together, our results provide a genome-wide resource of lncRNAs that may contribute to myogenic differentiation in goats and lay the groundwork for future investigation into their functions during skeletal muscle development.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cabras/genética , Cabras/metabolismo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Desenvolvimento Muscular/genética , Transcriptoma
7.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108057

RESUMO

Human antigen R (HuR) is an RNA-binding protein that contributes to a wide variety of biological processes and diseases. HuR has been demonstrated to regulate muscle growth and development, but its regulatory mechanisms are not well understood, especially in goats. In this study, we found that HuR was highly expressed in the skeletal muscle of goats, and its expression levels changed during longissimus dorsi muscle development in goats. The effects of HuR on goat skeletal muscle development were explored using skeletal muscle satellite cells (MuSCs) as a model. The overexpression of HuR accelerated the expression of myogenic differentiation 1 (MyoD), Myogenin (MyoG), myosin heavy chain (MyHC), and the formation of myotubes, while the knockdown of HuR showed opposite effects in MuSCs. In addition, the inhibition of HuR expression significantly reduced the mRNA stability of MyoD and MyoG. To determine the downstream genes affected by HuR at the differentiation stage, we conducted RNA-Seq using MuSCs treated with small interfering RNA, targeting HuR. The RNA-Seq screened 31 upregulated and 113 downregulated differentially expressed genes (DEGs) in which 11 DEGs related to muscle differentiation were screened for quantitative real-time PCR (qRT-PCR) detection. Compared to the control group, the expression of three DEGs (Myomaker, CHRNA1, and CAPN6) was significantly reduced in the siRNA-HuR group (p < 0.01). In this mechanism, HuR bound to Myomaker and increased the mRNA stability of Myomaker. It then positively regulated the expression of Myomaker. Moreover, the rescue experiments indicated that the overexpression of HuR may reverse the inhibitory impact of Myomaker on myoblast differentiation. Together, our findings reveal a novel role for HuR in promoting muscle differentiation in goats by increasing the stability of Myomaker mRNA.


Assuntos
Células Satélites de Músculo Esquelético , Animais , Humanos , Células Satélites de Músculo Esquelético/metabolismo , Cabras/genética , Diferenciação Celular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , RNA Interferente Pequeno/metabolismo , Desenvolvimento Muscular/genética
8.
Animal ; 17(3): 100706, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758301

RESUMO

Tibetan goats, Taihang goats, Jining grey goats, and Meigu goats are the representative indigenous goats in China, found in Qinghai-Tibet Plateau, Western pastoral area, Northern and Southern agricultural regions. Very few studies have conducted a comprehensive analysis of the genomic diversity and selection of these breeds. We genotyped 96 unrelated individuals, using goat 53 K Illumina BeadChip array, of the following goat breeds: Tibetan (TG), Taihang (THG), Jining grey (JGG), and Meigu (MGG). A total of 45 951 single nucleotide polymorphisms were filtered to estimate the genetic diversity and selection signatures. All breeds had a high proportion (over 95%) of polymorphic loci. The observed and excepted heterozygosity ranged from 0.338 (MGG) to 0.402 (JGG) and 0.339 (MGG) to 0.395 (JGG), respectively. Clustering analysis displayed a genetically distinct lineage for each breed, and their Fst were greater than 0.25, indicating that they had a higher genetic differentiation between groups. Furthermore, effective population size reduced in all four populations, indicating a loss of genetic diversity. In addition, runs of homozygosity were mainly distributed in 5-10 Mb. Lastly, we identified signature genes, which were closely related to high-altitude adaptation (ADIRF) and prolificity (CNTROB, SMC3, and PTEN). This study provides a valuable resource for future studies on genome-wide perspectives on the diversity and selection signatures of Chinese indigenous goats.


Assuntos
Genética Populacional , Cabras , Animais , Cabras/genética , Polimorfismo de Nucleotídeo Único , Genoma , Genótipo
9.
Front Microbiol ; 13: 1020657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466638

RESUMO

The incidence of diarrhea in lambs is frequent in large-scale sheep farms, which greatly impacts the growth and health of lambs. The aim of this study was to assess the changes in serum biochemical and immunological parameters and gut microbiome composition in suckling lambs suffering from diarrhea or not, reared on an intensive commercial farm. We found a reduced diversity of intestinal bacteria in suckling lambs suffering from diarrhea. Firmicutes and Bacteroidetes were the dominant flora in both groups of lambs, while the Bacteroidetes decreased in diarrheic lambs, no changes were reported in Firmicutes. Compared with healthy lambs, the proportion of aerobic bacteria, facultative anaerobic bacteria, and stress tolerant bacteria increased in lambs suffering from diarrhea, while that of anaerobic bacteria and potentially pathogenic bacteria decreased slightly. In addition, the contents of total cholesterol, immunoglobulins (Ig) G, and IgM in the serum of lambs suffering from diarrhea were lower than those of healthy lambs. This study explored the association between diarrhea occurrence, intestinal microbial community structure, and metabolic and immunological status in Hu lambs.

10.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555418

RESUMO

As a well-known cancer-related miRNA, miR-193b-3p is enriched in skeletal muscle and dysregulated in muscle disease. However, the mechanism underpinning this has not been addressed so far. Here, we probed the impact of miR-193b-3p on myogenesis by mainly using goat tissues and skeletal muscle satellite cells (MuSCs), compared with mouse C2C12 myoblasts. miR-193b-3p is highly expressed in goat skeletal muscles, and ectopic miR-193b-3p promotes MuSCs proliferation and differentiation. Moreover, insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) is the most activated insulin signaling gene when there is overexpression of miR-193b-3p; the miRNA recognition element (MRE) within the IGF1BP1 3' untranslated region (UTR) is indispensable for its activation. Consistently, expression patterns and functions of IGF2BP1 were similar to those of miR-193b-3p in tissues and MuSCs. In comparison, ectopic miR-193b-3p failed to induce PAX7 expression and myoblast proliferation when there was IGF2BP1 knockdown. Furthermore, miR-193b-3p destabilized IGF2BP1 mRNA, but unexpectedly promoted levels of IGF2BP1 heteronuclear RNA (hnRNA), dramatically. Moreover, miR-193b-3p could induce its neighboring genes. However, miR-193b-3p inversely regulated IGF2BP1 and myoblast proliferation in the mouse C2C12 myoblast. These data unveil that goat miR-193b-3p promotes myoblast proliferation via activating IGF2BP1 by binding to its 3' UTR. Our novel findings highlight the positive regulation between miRNA and its target genes in muscle development, which further extends the repertoire of miRNA functions.


Assuntos
MicroRNAs , Células Satélites de Músculo Esquelético , Animais , Camundongos , Cabras/genética , Cabras/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , RNA Mensageiro , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética
11.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361663

RESUMO

The proliferation and differentiation of mammalian skeletal muscle satellite cells (MuSCs) are highly complicated. Apart from the regulatory signaling cascade driven by the protein-coding genes, non-coding RNAs such as microRNAs (miRNA) and circular RNAs (circRNAs) play essential roles in this biological process. However, circRNA functions in MuSCs proliferation and differentiation remain largely to be elucidated. Here, we screened for an exonic circTCF4 based on our previous RNA-Seq data, specifically expressed during the development of the longest dorsal muscle in goats. Subsequently, the circular structure and whole sequence of circTCF4 were verified using Sanger sequencing. Besides, circTCF4 was spatiotemporally expressed in multiple tissues from goats but strikingly enriched in muscles. Furthermore, circTCF4 suppressed MuSCs proliferation and differentiation, independent of AGO2 binding. Finally, we conducted Poly(A) RNA-Seq using cells treated with small interfering RNA targeting circTCF4 and found that circTCF4 would affect multiple signaling pathways, including the insulin signaling pathway and AMPK signaling pathway related to muscle differentiation. Our results provide additional solid evidence for circRNA regulating skeletal muscle formation.


Assuntos
MicroRNAs , Células Satélites de Músculo Esquelético , Animais , Células Satélites de Músculo Esquelético/metabolismo , RNA Circular/genética , Cabras/genética , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Músculo Esquelético/metabolismo , Proliferação de Células/genética
12.
Front Physiol ; 13: 979121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091364

RESUMO

The rumen is an essential digestive and absorption organ of ruminants. During fetal life, lactation, and post-weaning period, goat rumen undergoes drastic morphological and metabolic-functional changes triggered by potential regulated genes and non-coding RNA molecules. As the essential regulatory factors, long non-coding RNAs (lncRNAs) have vital functions in various biological activities. However, their roles during rumen development are still poorly explored in ruminants. To explore the genome-wide expression profiles of lncRNAs and mRNAs in the goat rumens, we generated 5,007 lncRNAs and 19,738 mRNAs identified during the fetal and prepubertal stages by the high-throughput RNA sequencing. Notably, 365 lncRNAs and 2,877 mRNAs were considered to be differentially expressed. The weighted gene co-expression network analysis and functional analysis were performed to explore the regulatory roles of those differentially expressed molecules. The cis-and trans-target genes of differently expressed lncRNAs were enriched for pathways related to focal adhesion, cGMP-PKG signaling pathway, alpha-linolenic acid metabolism, arachidonic acid metabolism, and fat digestion and absorption. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses showed that the differently expressed genes mainly participated in mitotic cytokinesis, desmosome, fatty acid degradation, cell adhesion molecules, and fatty acid metabolism. The prediction of lncRNA-mRNA interaction networks further revealed transcripts potentially involved in rumen development. The present study profiles a global overview of lncRNAs and mRNAs during rumen development. Our findings provide valuable resources for genetic regulation and molecular mechanisms of rumen development in ruminants.

13.
Animals (Basel) ; 12(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36139225

RESUMO

Understanding the genetic composition of indigenous goats is essential to promote the scientific conservation and sustainable utilization of these breeds. The Jianchang Black (JC) goat, a Chinese native breed, is solid black and exhibits crude feed tolerance, but is characterized by a low growth rate and small body size. Based on the whole-genome sequencing data for 30 JC, 41 Jintang Black (JT), and 40 Yunshang Black (YS) goats, and 21 Bezoar ibexes, here, we investigated the genetic composition of JC goats by conducting analyses of the population structure, runs of homozygosity (ROH), genomic inbreeding, and selection signature. Our results revealed that JT and YS showed a close genetic relationship with a non-negligible amount of gene flows but were genetically distant from JC, apart from Bezoars. An average of 2039 ROHs were present in the autosomal genome per individual. The ROH-based inbreeding estimates in JC goats generally showed moderate values ranging from 0.134 to 0.264, mainly due to rapid declines in the effective population size during recent generations. The annotated genes (e.g., IL2, IL7, and KIT) overlapping with ROH islands were significantly enriched in immune-related biological processes. Further, we found 61 genes (e.g., STIM1, MYO9A, and KHDRBS2) under positive selection in JC goats via three complementary approaches, which may underly genetic adaptations to local environmental conditions. Our findings provided references for the conservation and sustainable utilization of JC goats.

14.
Front Microbiol ; 13: 904475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35801115

RESUMO

Early weaning and milk substitutes increase the incidence of diarrhea in young ruminants, which may modify their gut microbiota, metabolism, immunity, and health. The aim of the study was to determine if early weaning and milk substitutes affect the gut microbiota, metabolism, and immunological status of goat kids suffering from diarrhea. The 16S rRNA gene and metagenomic sequencing in feces and serum metabolomics of early-weaned and artificially reared goat kids suffering from diarrhea (DK group) and healthy goat kids reared by their mothers (HK group) were analyzed. The serum biochemistry and immunoglobulin concentration were also determined. Several probiotics, such as Streptococcus and Lactobacillus, were higher in the feces of the DK group than in feces of the HK group. Ruminococcus sp. was elevated in the feces of HKs, likely being a biomarker for goat health. Taking all the carbohydrate-active enzyme (CAZyme) families into consideration, 20 CAZyme families were different between the groups. Compared with the DK group, the relative quantity of glycoside hydrolases (GH) and glycosyltransferase (GT) families in the HK group decreased. GT70 was only identified in HK kids participating in the activity of ß-glucuronosyltransferase during the carbohydrate metabolism. Overall, 24 metabolites were different between the groups, which were mainly involved in protein digestion and absorption, cyanoamino acid metabolism, and cholesterol metabolism. The concentrations of immunoglobulins G and M were significantly lower in the DK than in the HK group. In conclusion, our study characterized the fecal microbiota, metabolism, and immunological status of early-weaned and artificially reared goat kids suffering from diarrhea.

15.
Front Physiol ; 13: 858991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431995

RESUMO

Circular RNAs (circRNAs) are key regulatory factors with vital functions in various biological activities. However, little has been reported concerning the genetic regulation of circRNAs during rumen development in goats. The aim of this study was to identify the genome-wide expression profiles of circRNAs in the rumen of goats during fetal development and before and after weaning. Histological morphology showed that from the fetal period (days 60 and 135 of gestation) to the prepuberal period (days 60 and 150 of age) the rumen papilla developed gradually, and the thickness of the rumen muscular layer increased. A total of 11,149 circRNAs were identified in the four development stages by RNA-sequencing. From this, 1,518 were differentially expressed circRNAs (DECs). Fifty-eight DECs were up-regulated from 60 to 135 days of gestation, and 93 from day 135 of pregnancy to 30 days after birth. A large proportion (598) of DECs were down-regulated from day 135 of gestation to 30 days after birth. The expression levels of six randomly selected circRNAs were validated by qPCR, and their back-splicing junction (BSJ) sites were also confirmed. Ontology and pathway analyses revealed that the parental genes of DECs were mainly involved in the signaling pathways related to cell proliferation and apoptosis. The interaction network of circRNAs with their target miRNAs showed its involvement in cell proliferation and apoptosis signaling pathways. In conclusion, we identified the genome-wide expression profiles of circRNAs in the rumen of goats during fetal development and before and after weaning. These results provide a basis for further study on the regulatory effect of circRNAs on the development of rumen tissues.

16.
Animals (Basel) ; 12(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454294

RESUMO

Skeletal myogenesis is a complicated biological event that involves a succession of tightly controlled gene expressions. In order to identify novel regulators of this process, we performed mRNA-Seq studies of goat skeletal muscle satellite cells (MuSCs) cultured under proliferation (GM) and differentiation (DM1/DM5) conditions. A total of 19,871 goat genes were expressed during these stages, 198 of which represented novel transcripts. Notably, in pairwise comparisons at the different stages, 2551 differentially expressed genes (DEGs) were identified (p < 0.05), including 1560 in GM vs. DM1, 1597 in GM vs. DM5, and 959 in DM1 vs. DM5 DEGs. The time-series expression profile analysis clustered the DEGs into eight gene groups, three of which had significantly upregulated and downregulated patterns (p < 0.05). Functional enrichment analysis showed that DEGs were enriched for essential biological processes such as muscle structure development, muscle contraction, muscle cell development, striated muscle cell differentiation, and myofibril assembly, and were involved in pathways such as the MAPK, Wnt and PPAR signaling pathways. Moreover, the expression of eight DEGs (MYL2, DES, MYOG, FAP, PLK2, ADAM, WWC1, and PRDX1) was validated. These findings offer novel insights into the transcriptional regulation of skeletal myogenesis in goats.

17.
Genes (Basel) ; 13(4)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35456469

RESUMO

Myogenesis is a complex process controlled by several coding and non-coding RNAs (ncRNAs), such as circular RNAs (circRNAs) that are known to function as endogenous microRNAs (miRNAs) sponges. Cerebellar Degeneration-Related protein 1 antisense (CDR1as) is the most spotlighted circRNA that is known as an miR-7 sponge, which has bloomed circRNAs' research in animal disease and physiology. Here, we screened for miRNAs and mRNA associated with CDR1as and further characterized their regulatory function during muscle differentiation. We found that a total of 43 miRNAs (including miR-107-3p, miR-125b-5p, miR-140-5p, miR-29a-3p, and miR-27a-3p upregulated) and 789 mRNAs (including ANGPT1, E2F2, CCN1, FGFR1, and MEF2C downregulated) were differentially expressed in goat skeletal muscle satellite cells (SMSCs). Further, knockdown of CDR1as and ANGPT1 inhibited SMSCs differentiation. miR-27a-3p was differentially upregulated after the knockdown of CDR1as in SMSCs. Overexpressed miR-27a-3p decreased SMSCs differentiation. Via RNAhybrid and luciferase, miR-27a-3p was identified to regulate ANGPT1. We discovered that miR-27a-3p has an inverse relationship with CDR1as and decreases the expression level of ANGPT1 during SMSCs differentiation. In summary, our study demonstrates that siCDR1as inhibits myoblast differentiation by downregulating ANGPT1 mRNA via miR-27a-3p in SMSCs.


Assuntos
MicroRNAs , Células Satélites de Músculo Esquelético , Animais , Cabras/genética , Cabras/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Mensageiro/genética , Células Satélites de Músculo Esquelético/metabolismo
18.
Genomics ; 114(2): 110284, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124172

RESUMO

Non-coding RNAs have been shown to play vital roles in muscle development. However, the biological roles of long non-coding natural antisense transcripts, antisense lncRNAs (ASlncRNAs), are largely unknown in embryonic muscle development. Here, we identified a total of 466 ASlncRNAs in the longissimus dorsi muscle. And 48 differentially expressed ASlncRNAs were identified based on pairwise comparisons (P < 0.05), sixteen of which were validated by qPCR. Additionally, 466 ASlncRNAs were predicted to target 335 protein coding genes based on complementary base-pairing. Enrichment analysis suggests that ASlncRNAs may be involved in muscle development by negatively regulating the expression of target genes. Furthermore, 170 ASlncRNAs were identified as potential miRNA precursors, suggesting that these ASlncRNAs may be involved in the regulation of muscle development by producing miRNA precursors. Our results provide a catalog of goat muscle-related ASlncRNAs, and will contribute to a fuller understanding of the roles of ASlncRNAs in muscle development.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Perfilação da Expressão Gênica/métodos , Cabras/genética , MicroRNAs/genética , Desenvolvimento Muscular/genética , RNA Longo não Codificante/genética , Transcriptoma
19.
Anim Sci J ; 92(1): e13631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34545661

RESUMO

Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) plays essential roles in the proliferation of skeletal muscle satellite cells (MuSCs). Increasing evidence has shown that IGF2BP1 regulates the expression of noncoding RNAs and mRNAs. However, the related molecular network remains to be fully understood. Therefore, we performed RNA sequencing and analyzed the microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and mRNAs differentially expressed in goat MuSCs treated with IGF2BP1 overexpressing and empty vectors. A total of 36 miRNAs, 59 lncRNAs, and 44 mRNAs were differentially expressed caused by IGF2BP1. Expectedly, they were enriched in muscle development-related Rap1, PI3K-AKT, and FoxO signaling pathways. Finally, we constructed a lncRNA-miRNA-mRNA interaction network containing 30 lncRNAs, 15 miRNAs, and 34 mRNAs, in which several miRNAs, including miR-133a-3p, miR-204-5p, miR-125a-3p, miR-145-3p, and miR-423-5p, relate with cell growth and participate in muscle development. Overall, we constructed an IGF2BP1-related network, which provides new insight into the myogenic proliferation of goat.


Assuntos
MicroRNAs , RNA Longo não Codificante , Células Satélites de Músculo Esquelético , Animais , Redes Reguladoras de Genes , Cabras/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases , RNA Mensageiro/genética
20.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806945

RESUMO

Circular RNA (circRNA) is a kind of novel endogenous noncoding RNA formed through back-splicing of mRNA precursor. The biogenesis, degradation, nucleus-cytoplasm transport, location, and even translation of circRNA are controlled by RNA-binding proteins (RBPs). Therefore, circRNAs and the chaperoned RBPs play critical roles in biological functions that significantly contribute to normal animal development and disease. In this review, we systematically characterize the possible molecular mechanism of circRNA-protein interactions, summarize the latest research on circRNA-protein interactions in muscle development and myocardial disease, and discuss the future application of circRNA in treating muscle diseases. Finally, we provide several valid prediction methods and experimental verification approaches. Our review reveals the significance of circRNAs and their protein chaperones and provides a reference for further study in this field.


Assuntos
Suscetibilidade a Doenças , Desenvolvimento Muscular/fisiologia , RNA Circular/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Edição de RNA , Transporte de RNA , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA