Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
PLoS One ; 19(8): e0305480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39088514

RESUMO

OBJECTIVE: Most biomechanical research on the application of Kinesio taping (KT) to the ankle joint focused on testing anticipated movements. However, ankle sprains frequently occur in real life in unanticipated situations, where individuals are unprepared and face sudden external stimuli. This situation is completely different from the anticipated situation. The aim of the present study was to investigate the effects of ankle KT application on the kinematic and kinetic characteristics of the knee and ankle joints during unanticipated jump tasks in collegiate athletes. METHODS: Eighteen healthy collegiate athletes experienced three taping conditions in a randomized order: no taping (NT), placebo taping (PT), and KT, and performed unanticipated jump tasks. A 9-camera infrared high-speed motion capture system was employed to collect knee and ankle kinematic data, and a 3-dimensional force plate was utilized to collect knee and ankle kinetic data during the tasks. RESULTS: During the right jumps, KT significantly increased peak knee flexion angle (P = 0.031) compared to NT and significantly decreased peak vertical ground reaction force (P < 0.001, P = 0.001) compared to NT and PT. During the left jumps, KT significantly reduced peak ankle inversion angle (P = 0.022, P < 0.001) and peak ankle inversion moment (P = 0.002, P = 0.001) compared to NT and PT. CONCLUSION: During unanticipated jump maneuvers, KT reduced peak ankle inversion angle, peak vertical ground reaction force, and peak ankle inversion moment and increased peak knee flexion angle in collegiate athletes.


Assuntos
Articulação do Tornozelo , Atletas , Fita Atlética , Articulação do Joelho , Humanos , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Masculino , Adulto Jovem , Articulação do Joelho/fisiologia , Feminino , Movimento/fisiologia , Amplitude de Movimento Articular/fisiologia
2.
Int Immunopharmacol ; 140: 112924, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39133958

RESUMO

Staphylococcus aureus (SA) is a common Gram-positive bacterium that activates inflammatory cells, expressing various cytokines and inducing an inflammatory response. Recent research revealed aconitate decarboxylase 1 (ACOD1) as a regulator of the immune response through various metabolic pathways, playing a dual role in the inflammatory response. However, the mechanism by which ACOD1 participates in the regulation of SA-induced inflammatory responses in macrophages remains unknown. Therefore, this study aims to investigate the function and underlying regulatory mechanisms of ACOD1 in SA-induced inflammatory response. This study reveals that SA induced a macrophage inflammatory response and upregulated ACOD1 expression. ACOD1 knockdown significantly inhibited SA-induced macrophage inflammatory response, attenuated SA-induced nuclear envelope wrinkling, and plasma membrane rupture, and suppressed the TLR4/NF-κB signaling pathway. Furthermore, ACOD1 knockdown reduced the inflammatory response and alleviated lung tissue injury and cellular damage, leading to decreased bacterial loads in the lungs of SA-infected mice. Collectively, these findings demonstrate that SA induces an inflammatory response in macrophages and increases ACOD1 expression. ACOD1 enhances SA-induced inflammatory responses via the TLR4/NF-κB signaling pathway. Our findings highlight the significant role of ACOD1 in mediating the inflammatory response in SA-infected macrophages and elucidate its molecular mechanism in regulating the SA-induced inflammatory response.

3.
Plant Biotechnol J ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046162

RESUMO

The elucidation of genetic architecture and molecular regulatory networks underlying complex traits remains a significant challenge in life science, largely due to the substantial background effects that arise from epistasis and gene-environment interactions. The chromosome segment substitution line (CSSL) is an ideal material for genetic and molecular dissection of complex traits due to its near-isogenic properties; yet a comprehensive analysis, from the basic identification of substitution segments to advanced regulatory network, is still insufficient. Here, we developed two cotton CSSL populations on the Gossypium hirsutum background, representing wide adaptation and high lint yield, with introgression from G. barbadense, representing superior fibre quality. We sequenced 99 CSSLs that demonstrated significant differences from G. hirsutum in fibre, and characterized 836 dynamic fibre transcriptomes in three crucial developmental stages. We developed a workflow for precise resolution of chromosomal substitution segments; the genome sequencing revealed substitutions collectively representing 87.25% of the G. barbadense genome. Together, the genomic and transcriptomic survey identified 18 novel fibre-quality-related quantitative trait loci with high genetic contributions and the comprehensive landscape of fibre development regulation. Furthermore, analysis determined unique cis-expression patterns in CSSLs to be the driving force for fibre quality alteration; building upon this, the co-expression regulatory network revealed biological relationships among the noted pathways and accurately described the molecular interactions of GhHOX3, GhRDL1 and GhEXPA1 during fibre elongation, along with reliable predictions for their interactions with GhTBA8A5. Our study will enhance more strategic employment of CSSL in crop molecular biology and breeding programmes.

4.
Front Aging Neurosci ; 16: 1408336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040547

RESUMO

Background: Vascular cognitive impairment (VCI) manifests in memory impairment, mental slowness, executive dysfunction, behavioral changes, and visuospatial abnormalities, significantly compromising the quality of daily life for patients and causing inconvenience to caregivers. Neuroimaging serves as a crucial approach to evaluating the extent, location, and type of vascular lesions in patients suspected of VCI. Nevertheless, there is still a lack of comprehensive bibliometric analysis to discern the research status and emerging trends concerning VCI neuroimaging. Objective: This study endeavors to explore the collaboration relationships of authors, countries, and institutions, as well as the research hotspots and frontiers of VCI neuroimaging by conducting a bibliometric analysis. Methods: We performed a comprehensive retrieval within the Core Collection of Web of Science, spanning from 2000 to 2023. After screening the included literature, CiteSpace and VOSviewer were utilized for a visualized analysis aimed at identifying the most prolific author, institution, and journal, as well as extracting valuable information from the analysis of references. Results: A total of 1,024 publications were included in this study, comprising 919 articles and 105 reviews. Through the analysis of keywords and references, the research hotspots involve the relationship between neuroimaging of cerebral small vessel disease (CSVD) and VCI, the diagnosis of VCI, and neuroimaging methods pertinent to VCI. Moreover, potential future research directions encompass CSVD, functional and structural connectivity, neuroimaging biomarkers, and lacunar stroke. Conclusion: The research in VCI neuroimaging is constantly developing, and we hope to provide insights and references for future studies by delving into the research hotspots and frontiers within this field.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124687, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38909558

RESUMO

Soil Organic Carbon (SOC) is crucial for determining soil fertility and environmental quality. The problem with traditional SOC chemical analysis methods is that they are time-consuming and resource-intensive. In recent years, visible-near infrared (Vis-NIR) spectroscopy has been employed as an alternative method for SOC determination. However, when applied on a larger scale, the prediction accuracy of soil properties decreases due to the heterogeneity of samples. Therefore, this study compared and analyzed the performance of partial least squares regression (PLSR), support vector regression (SVR), random forest (RF), and gaussian process regression (GPR) in predicting SOC. On this basis, a GPR model based on a hybrid kernel function (HKF-GPR) was proposed for SOC prediction. This hybrid kernel function was designed according to the properties of single kernel functions and the characteristics of soil spectral data. Results indicate that in large soil spectral databases, the GPR model outperforms other models in estimating SOC. The HKF-GPR model achieved the best SOC estimation accuracy, with an R2 of 0.7671, RMSE of 5.2934 g/kg, RPD of 2.0721, and RPIQ of 2.5789. Compared to other regression models, the HKF-GPR model proposed in this paper offers broader applicability and superior performance, enabling SOC estimation in large soil spectral libraries.

6.
Semin Arthritis Rheum ; 68: 152488, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38896912

RESUMO

BACKGROUND: Primary Sjögren syndrome (pSjS) is one of the most prevalent systemic autoimmune diseases and characterized with hyperactivation of B cell and the abundant presence of autoantibodies in sera. The salivary gland epithelial cells (SGECs) release autoantigens to evoke autoimmunity through releasing elevated apoptosis or secreting autoantigen-containing exosomes, thus identifying autoantibodies directly to SGECs might provide insights into disease related biomarkers as well as further elucidating pathogenesis mechanisms. The present study was undertaken to identify autoantibodies to SGECs and to evaluate its clinical values in Chinese pSjS. METHODS: Cell-based indirect immunofluorescence and immunostaining, two-dimensional electrophoresis and liquid chromatograph-tandem mass spectrometry were conducted to identify the autoantibodies to human salivary gland cell line A253 in pSjS sera. Enzyme-linked immunosorbent assay (ELISA) was applied to identify autoantibody titer in pSjS cohort and healthy controls. The prevalence and clinical significance of the identified autoantibodies was further assessed in pSjS population. RESULTS: Anti-calreticulin (CALR) antibody was identified as a new autoantibody directly to SGECs in sera from pSjS patients. Anti-CALR antibody were detected in 37 of 120 pSjS patients (30.83 %) and 1 of 54 healthy controls (1.85 %). It was found in 40.85 % pSjS with anti-SSA positive, 53.85 % with anti-SSB positive, and 14.7 % in sero-negative pSjS. Anti-CALR antibody was associated with clinical manifestations including weight loss(p = 0.045), vasculitis (p = 0.031), and laboratory parameters including erythrocyte sedimentation rate (ESR) (r = 0.056, p = 0.021), Krebs von den Lungen-6 (KL-6) (r = 0.121, p = 0.035), IgG (r = 0.097, p < 0.001), IgG2 (r = 0.142, p = 0.022), IgG3 (r = 0.287, p < 0.001), fibrinogen (r = 0.084, p = 0.016), D-Dimer (r = 0.086, p = 0.012) and fibrinogen degradation production (r = 0.150, p = 0.002). The expression of CALR in salivary glands was related to lymphocytes infiltration into salivary glands in pSjS patients (r = 0.7076, p = 0.0034). CONCLUSION: To our knowledge, this was the first study to investigate the prevalence and clinical significance of anti-CALR antibody in Chinses pSjS patients. The present study identified an autoimmune antibody, anti-CALR antibody, as a good autoimmune biomarker for sero-negative pSjS.

7.
Plant Commun ; 5(8): 100938, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38689494

RESUMO

Seeds play a crucial role in plant reproduction, making it essential to identify genes that affect seed development. In this study, we focused on UDP-glucosyltransferase 71C4 (UGT71C4) in cotton, a member of the glycosyltransferase family that shapes seed width and length, thereby influencing seed index and seed cotton yield. Overexpression of UGT71C4 results in seed enlargement owing to its glycosyltransferase activity on flavonoids, which redirects metabolic flux from lignin to flavonoid metabolism. This shift promotes cell proliferation in the ovule via accumulation of flavonoid glycosides, significantly enhancing seed cotton yield and increasing the seed index from 10.66 g to 11.91 g. By contrast, knockout of UGT71C4 leads to smaller seeds through activation of the lignin metabolism pathway and redirection of metabolic flux back to lignin synthesis. This redirection leads to increased ectopic lignin deposition in the ovule, inhibiting ovule growth and development, and alters yield components, increasing the lint percentage from 41.42% to 43.40% and reducing the seed index from 10.66 g to 8.60 g. Our research sheds new light on seed size development and reveals potential pathways for enhancing seed yield.


Assuntos
Glucosiltransferases , Gossypium , Sementes , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lignina/metabolismo , Regulação da Expressão Gênica de Plantas
8.
BMC Biol ; 22(1): 110, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735918

RESUMO

BACKGROUND: Plants differ more than threefold in seed oil contents (SOCs). Soybean (Glycine max), cotton (Gossypium hirsutum), rapeseed (Brassica napus), and sesame (Sesamum indicum) are four important oil crops with markedly different SOCs and fatty acid compositions. RESULTS: Compared to grain crops like maize and rice, expanded acyl-lipid metabolism genes and relatively higher expression levels of genes involved in seed oil synthesis (SOS) in the oil crops contributed to the oil accumulation in seeds. Here, we conducted comparative transcriptomics on oil crops with two different SOC materials. In common, DIHYDROLIPOAMIDE DEHYDROGENASE, STEAROYL-ACYL CARRIER PROTEIN DESATURASE, PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE, and oil-body protein genes were both differentially expressed between the high- and low-oil materials of each crop. By comparing functional components of SOS networks, we found that the strong correlations between genes in "glycolysis/gluconeogenesis" and "fatty acid synthesis" were conserved in both grain and oil crops, with PYRUVATE KINASE being the common factor affecting starch and lipid accumulation. Network alignment also found a conserved clique among oil crops affecting seed oil accumulation, which has been validated in Arabidopsis. Differently, secondary and protein metabolism affected oil synthesis to different degrees in different crops, and high SOC was due to less competition of the same precursors. The comparison of Arabidopsis mutants and wild type showed that CINNAMYL ALCOHOL DEHYDROGENASE 9, the conserved regulator we identified, was a factor resulting in different relative contents of lignins to oil in seeds. The interconnection of lipids and proteins was common but in different ways among crops, which partly led to differential oil production. CONCLUSIONS: This study goes beyond the observations made in studies of individual species to provide new insights into which genes and networks may be fundamental to seed oil accumulation from a multispecies perspective.


Assuntos
Produtos Agrícolas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Óleos de Plantas , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Óleos de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Cell Death Dis ; 15(3): 190, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443340

RESUMO

The heterogeneous nature of tumors presents a considerable obstacle in addressing imatinib resistance in advanced cases of gastrointestinal stromal tumors (GIST). To address this issue, we conducted single-cell RNA-sequencing in primary tumors as well as peritoneal and liver metastases from patients diagnosed with locally advanced or advanced GIST. Single-cell transcriptomic signatures of tumor microenvironment (TME) were analyzed. Immunohistochemistry and multiplex immunofluorescence staining were used to further validate it. This analysis revealed unique tumor evolutionary patterns, transcriptome features, dynamic cell-state changes, and different metabolic reprogramming. The findings indicate that in imatinib-resistant TME, tumor cells with activated immune and cytokine-mediated immune responses interacted with a higher proportion of Treg cells via the TIGIT-NECTIN2 axis. Future immunotherapeutic strategies targeting Treg may provide new directions for the treatment of imatinib-resistant patients. In addition, IDO1+ dendritic cells (DC) were highly enriched in imatinib-resistant TME, interacting with various myeloid cells via the BTLA-TNFRSF14 axis, while the interaction was not significant in imatinib-sensitive TME. Our study highlights the transcriptional heterogeneity and distinct immunosuppressive microenvironment of advanced GIST, which provides novel therapeutic strategies and innovative immunotherapeutic agents for imatinib resistance.


Assuntos
Tumores do Estroma Gastrointestinal , Humanos , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Microambiente Tumoral , Evolução Biológica , Citocinas
12.
Small ; 20(29): e2309293, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38342681

RESUMO

In recent years, carbon dots (CDs) have garnered increasing attention due to their simple preparation methods, versatile performances, and wide-ranging applications. CDs can manifest various optical, physical, and chemical properties including quantum yield (QY), emission wavelength (Em), solid-state fluorescence (SSF), room-temperature phosphorescence (RTP), material-specific responsivity, pH sensitivity, anti-oxidation and oxidation, and biocompatibility. These properties can be effectively regulated through precise control of the CD preparation process, rendering them suitable for diverse applications. However, the lack of consideration given to the precise control of each feature of CDs during the preparation process poses a challenge in obtaining the requisite features for various applications. This paper is to analyze existing research and present novel concepts and ideas for creating CDs with different distinct features and applications. The synthesis methods of CDs are discussed in the first section, followed by a comprehensive overview of the important properties of CDs and the modification strategy. Subsequently, the application of CDs and their requisite properties are reviewed. Finally, the paper outlines the current challenges in controlling CDs properties and their applications, discusses potential solutions, and offers suggestions for future research.

13.
J Adv Res ; 56: 15-29, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36966917

RESUMO

INTRODUCTION: Allotetraploid upland cotton (Gossypium hirsutum L.) is native to the Mesoamerican and Caribbean regions, had been improved in the southern United States by the mid-eighteenth century, was then dispersed worldwide. However, a Hainan Island Native Cotton (HIC) has long been grown extensively on Hainan Island, China. OBJECTIVES: Explore HIC's evolutionary relationship and genomic diversity with other tetraploid cottons, its origin and whether it was used for YAZHOUBU (Yazhou cloth, World Intangible Cultural Heritage) weaving, and the role of structural variations (SVs) in upland cotton domestication. METHODS: We assembled a high-quality genome of one HIC plant. We performed phylogenetic analysis, divergence time estimation, principal component analysis and population differentiation estimation using cotton assemblies and/or resequencing data. SVs were detected by whole-genome comparison. A F2 population was used for linkage analysis and to study effects of SVs. Buoyancy and salt water tolerance tests for seeds were conducted. RESULTS: We found that the HIC belongs to G. purpurascens. G. purpurascens is best classified as a primitive race of G. hirsutum. The potential for long range transoceanic dispersal of G. purpurascens seeds was proved. A set of SVs, selective sweep regions between G. hirsutum races and cultivars, and quantitative trait loci (QTLs) of eleven agronomic traits were obtained. SVs, especially large-scale SVs, were found to have important effects on cotton domestication and improvement. Of them, eight large-scale inversions strongly associated with yield and fiber quality have probably undergone artificial selection in domestication. CONCLUSION: G. purpurascens including HIC is a primitive race of G. hirsutum, probably disperse to Hainan from Central America by floating on ocean currents, may have been partly domesticated, planted and was likely used for YAZHOUBU weaving in Hainan much earlier than the Pre-Columbian period. SV plays an important role in cotton domestication and improvement.


Assuntos
Domesticação , Gossypium , Gossypium/genética , Filogenia , Genoma de Planta/genética , Locos de Características Quantitativas
14.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109467

RESUMO

To address the problem that the performance of the detector in airborne magnetic anomaly detection (MAD) is terrible, a stochastic resonance (SR) detection algorithm based on orthonormalized basis function (OBF-SR) is proposed for MAD under low signal-to-noise ratio conditions. The signal contaminated by noise is first preprocessed by the OBF method, where the sum of the three components in the OBF space is selected as the SR system input. Then, a parallel SR system with different initial states is designed to detect the signal. Finally, the simulation analysis of MAD methods is performed to draw a comparison between the OBF-SR method, the typical SR method, and the OBF method. The results show that the OBF-SR method outperforms the SR and OBF methods in the detection probability and detection range under the same conditions.

16.
Plant J ; 116(2): 389-403, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37403589

RESUMO

Trichomes, the outward projection of plant epidermal tissue, provide an effective defense against stress and insect pests. Although numerous genes have been identified to be involved in trichome development, the molecular mechanism for trichome cell fate determination is not well enunciated. Here, we reported GoSTR functions as a master repressor for stem trichome formation, which was isolated by map-based cloning based on a large F2 segregating population derived from a cross between TM-1 (pubescent stem) and J220 (smooth stem). Sequence alignment revealed a critical G-to-T point mutation in GoSTR's coding region that converted codon 2 from GCA (Alanine) to TCA (Serine). This mutation occurred between the majority of Gossypium hirsutum with pubescent stem (GG-haplotype) and G. barbadense with glabrous stem (TT-haplotype). Silencing of GoSTR in J220 and Hai7124 via virus-induced gene silencing resulted in the pubescent stems but no visible change in leaf trichomes, suggesting stem trichomes and leaf trichomes are genetically distinct. Yeast two-hybrid assay and luciferase complementation imaging assay showed GoSTR interacts with GoHD1 and GoHOX3, two key regulators of trichome development. Comparative transcriptomic analysis further indicated that many transcription factors such as GhMYB109, GhTTG1, and GhMYC1/GhDEL65 which function as positive regulators of trichomes were significantly upregulated in the stem from the GoSTR-silencing plant. Taken together, these results indicate that GoSTR functions as an essential negative modulator of stem trichomes and its transcripts will greatly repress trichome cell differentiation and growth. This study provided valuable insights for plant epidermal hair initiation and differentiation research.


Assuntos
Gossypium , Tricomas , Gossypium/genética , Tricomas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Epiderme Vegetal/metabolismo , Regulação da Expressão Gênica de Plantas/genética
17.
Sci Rep ; 13(1): 3464, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859456

RESUMO

Rice protein was used as a starting material to provide rice protein hydrolysates (RPH) through enzyme-assisted extraction. RPH was further fractionated using ultrafiltration membrane (UF) and classified by molecular weight (MW; MW < 1 kDa, MW 1-10 kDa, and MW > 10 kDa). Peptides with MW < 1 kDa possessed superior antioxidant properties (p < 0.05). Therefore, UF demonstrated great efficacy in selectively separating antioxidant peptides. A Pearson correlation analysis revealed that the total phenolic concentration was correlated with oxygen radical absorbance capacity (ORAC; r = 0.999, p < 0.05). Amino acid contents had negative correlations with the scavenging activity (specifically, IC50) of 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radicals (r = - 0.986 to - 1.000). Reducing power was related to aromatic amino acid contents (r = 0.997, p < 0.05). In this study, enzymatic hydrolysis was discovered to be an effective method of extracting and isolating natural antioxidant proteins from broken rice, thus preserving the nutritional quality of rice and making those proteins more accessible in future applications.


Assuntos
Oryza , Hidrolisados de Proteína , Antioxidantes , Peso Molecular , Capacidade de Absorbância de Radicais de Oxigênio
18.
Sci Rep ; 13(1): 2606, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788275

RESUMO

Tuberculosis (TB) is a zoonotic infectious disease caused by Mycobacterium tuberculosis (Mtb). Apoptosis and necrosis caused by the interaction between the host and the pathogen, as well as the host's inflammatory response, play an important role in the pathogenesis of TB. Dual-specificity phosphatase 1 (DUSP1) plays a vital role in regulating the host immune responses. However, the role of DUSP1 in the regulation of THP-1 macrophage apoptosis induced by attenuated Mycobacterium bovis Bacillus Calmette-Guérin (BCG) infection remains unclear. In the present study, we report that infection with BCG significantly induces macrophage apoptosis and induces the production of DUSP1, TNF-α and IL-1ß. DUSP1 knockdown significantly inhibited BCG-induced macrophage apoptosis and activation of MAPKs/NF-κB signaling pathway. In addition, DUSP1 knockdown suppressed BCG-induced inflammation in vivo. Taken together, this study demonstrates that DUSP1, as a regulator of MAPKs/NF-κB signaling pathway, plays a novel role in BCG-induced macrophage apoptosis and inflammatory response.


Assuntos
Mycobacterium bovis , Tuberculose , Humanos , NF-kappa B/metabolismo , Vacina BCG , Células THP-1 , Transdução de Sinais , Tuberculose/metabolismo , Apoptose , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo
19.
Mol Plant ; 16(4): 678-693, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36760124

RESUMO

Structural variations (SVs) have long been described as being involved in the origin, adaption, and domestication of species. However, the underlying genetic and genomic mechanisms are poorly understood. Here, we report a high-quality genome assembly of Gossypium barbadense acc. Tanguis, a landrace that is closely related to formation of extra-long-staple (ELS) cultivated cotton. An SV-based pan-genome (Pan-SV) was then constructed using a total of 182 593 non-redundant SVs, including 2236 inversions, 97 398 insertions, and 82 959 deletions from 11 assembled genomes of allopolyploid cotton. The utility of this Pan-SV was then demonstrated through population structure analysis and genome-wide association studies (GWASs). Using segregation mapping populations produced through crossing ELS cotton and the landrace along with an SV-based GWAS, certain SVs responsible for speciation, domestication, and improvement in tetraploid cottons were identified. Importantly, some of the SVs presently identified as associated with the yield and fiber quality improvement had not been identified in previous SNP-based GWAS. In particular, a 9-bp insertion or deletion was found to associate with elimination of the interspecific reproductive isolation between Gossypium hirsutum and G. barbadense. Collectively, this study provides new insights into genome-wide, gene-scale SVs linked to important agronomic traits in a major crop species and highlights the importance of SVs during the speciation, domestication, and improvement of cultivated crop species.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium , Gossypium/genética , Genoma de Planta/genética , Fenótipo , Tetraploidia
20.
Theor Appl Genet ; 136(1): 2, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36648515

RESUMO

KEY MESSAGE: The duplicated male sterile genes ms5m6 in cotton were map-based cloned and validated by the virus-induced gene silencing assays. Duplicate mutations of the GhCYP450 gene encoding a cytochrome P450 protein are responsible for the male sterility in cotton. The utilization of male sterility in cotton plays a vital role in improving yield and fiber quality. A complete male sterile line (ms5ms6) has been extensively used to develop hybrid cotton worldwide. Using Zhongkang-A (ZK-A) developed by transferring Bt and ms5ms6 genes into the commercial cultivar Zhongmiansuo 12, the duplicate genes were map-based cloned and confirmed via the virus-induced gene silencing (VIGS) assays. The duplicate mutations of GhCYP450 genes encoding a cytochrome P450 protein were responsible for producing male sterility in ms5ms6 in cotton. Sequence alignment showed that GhCYP450-Dt in ZK-A differed in two critical aspects from the fertile wild-type TM-1: GhCYP450-Dt has three amino acid (D98E, E168K, G198R) changes in the coding region and a 7-bp (GGAAAAA) insertion in the promoter domain; GhCYP450-At appears to be premature termination of GhCYP450 translation. Further morphological observation and cytological examination of GhCYP450-silenced plants induced by VIGS exhibited shorter filaments and no mature pollen grains. These results indicate that GhCYP450 is essential for pollen exine formation and pollen development for male fertility. Investigating the mechanisms of ms5ms6 male sterility will deepen our understanding of the development and utilization of heterosis.


Assuntos
Gossypium , Mutação , Infertilidade das Plantas , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Infertilidade das Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA