Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Biomacromolecules ; 25(5): 2852-2862, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38574372

RESUMO

Albumin nanoparticles are widely used in biomedicine due to their safety, low immunogenicity, and prolonged circulation. However, incorporating therapeutic molecules into these carriers faces challenges due to limited binding sites, restricting drug conjugation efficiency. We introduce a universal nanocarrier platform (X-UNP) using polyphenol-based engineering to incorporate phenolic moieties into albumin nanoparticles. Integration of catechol or galloyl groups significantly enhances drug binding and broadens the drug conjugation possibilities. Our study presents a library of X-UNP nanoparticles with improved drug-loading efficiency, achieving up to 96% across 10 clinically used drugs, surpassing conventional methods. Notably, ibuprofen-UNP nanoparticles exhibit a 5-fold increase in half-life compared with free ibuprofen, enhancing in vivo analgesic and anti-inflammatory effectiveness. This research establishes a versatile platform for protein-based nanosized materials accommodating various therapeutic agents in biotechnological applications.


Assuntos
Nanopartículas , Polifenóis , Polifenóis/química , Nanopartículas/química , Animais , Camundongos , Ibuprofeno/química , Portadores de Fármacos/química , Humanos , Albuminas/química , Soroalbumina Bovina/química
2.
PLoS One ; 19(3): e0298533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536776

RESUMO

An important cellular barrier to maintain the stability of the brain's internal and external environment is the blood-brain barrier (BBB). It also prevents harmful substances from entering brain tissue through blood circulation while providing protection for the central nervous system. It should be noted, however, that the intact BBB can be a barrier to the transport of most drugs into the brain via the conventional route of administration, which can prevent them from reaching effective concentrations for the treatment of disorders affecting the central nervous system. Electroacupuncture stimulation has been shown to be effective at opening the BBB in a series of experimental studies. This study systematically analyzes the possibility and mechanism by which electroacupuncture opens the BBB. In PubMed, Web of Science, VIP Database, Wanfang Database, and the Chinese National Knowledge Infrastructure, papers have been published for nearly 22 years aimed at opening the BBB and its associated structures. A comparison of EB content between electroacupuncture and control was selected as the primary outcome. There were also results on vascular endothelial growth factor (VEGF), nerve growth factor (NGF), P-Glycoprotein (P-gp), Matrix Metalloproteinase 9 (MMP-9), and glial fibrillary acidic protein (GFAP). We utilized Review Manager software analysis to analyze correlations between studies with a view to exploring the mechanisms of similarity. Evans Blue infiltration forest plot: pooled effect size of 2.04, 95% CI: 1.21 to 2.87, P < 0.01. These results indicate that electroacupuncture significantly increases EB penetration across the BBB. Most studies have reported that GFAP, MMP-9, and VEGF were upregulated after treatment. P-gp expression decreased as well. Electroacupuncture can open the BBB, and the sparse-dense wave is currently the most effective electroacupuncture frequency for opening the BBB. VEGF plays an important role in opening the BBB. It is also important to regulate the expression of MMP-9 and GFAP and inhibit the expression of P-gp.


Assuntos
Barreira Hematoencefálica , Eletroacupuntura , Ratos , Animais , Barreira Hematoencefálica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ratos Sprague-Dawley , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Permeabilidade
3.
Aging (Albany NY) ; 16(1): 207-225, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38175687

RESUMO

Ovarian cancer (OC) ranks as the second leading cause of death among gynecological cancers. Numerous studies have indicated a correlation between the tumor microenvironment (TME) and the clinical response to treatment in OC patients. Tumor-associated macrophages (TAMs), a crucial component of the TME, exert influence on invasion, metastasis, and recurrence in OC patients. To delve deeper into the role of TAMs in OC, this study conducted an extensive analysis of single-cell data from OC patients. The aim is to develop a new risk score (RS) to characterize the response to treatment in OC patients to inform clinical treatment. We first identified TAM-associated genes (TAMGs) in OC patients and examined the protein and mRNA expression levels of TAMGs by Western blot and PCR experiments. Additionally, a scoring system for TAMGs was constructed, successfully categorizing patients into high and low RS subgroups. Remarkably, significant disparities were observed in immune cell infiltration and immunotherapy response between the high and low RS subgroups. The findings revealed that patients in the high RS group had a poorer prognosis but displayed greater sensitivity to immunotherapy. Another important finding was that patients in the high RS subgroup had a higher IC50 for chemotherapeutic agents. Furthermore, further experimental investigations led to the discovery that THEMIS2 could serve as a potential target in OC patients and is associated with EMT (epithelial-mesenchymal transition). Overall, the TAMGs-based scoring system holds promise for screening patients who would benefit from therapy and provides valuable information for the clinical treatment of OC.


Assuntos
Neoplasias Ovarianas , Macrófagos Associados a Tumor , Humanos , Feminino , Macrófagos Associados a Tumor/metabolismo , Macrófagos/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Transição Epitelial-Mesenquimal/genética , Microambiente Tumoral/genética
4.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 112-119, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38158679

RESUMO

We aimed to explore microRNA (miR)-320's impacts on learning and memory in mice with vascular cognitive impairment induced via cerebral ischemia. After establishment of a cerebral small vessel disease (CSVD) cognitive impairment model, application of corresponding treatment methods was in the model mice to inject miR-320 antagomir/agomir and their negative controls to the lateral ventricles: Test of the learning and memory abilities of mice was conducted; Detection of oxidative stress, inflammation, miR-320, Vascular endothelial growth factor (VEGF) and endostatin (ES) was implemented; Taking mouse hippocampal neuron cells was to detect the cell advancement. MiR-320 was elevated in the CSVD model; MiR-320 was negatively linked with the learning and memory abilities of mice; Repressing miR-320 was available to memorably elevate the learning and memory abilities of CSVD mice; Depressing miR-320 clearly drove CSVD mouse neovascular protein VEGF, but reduced inflammation, oxidative stress response and ES; Restraining miR-320 was available to contribute to mouse neuronal cell advancement. MiR-320 mitigates the learning and memory abilities of cerebral ischemia-induced vascular cognitive dysfunction mice to a certain extent.


Assuntos
Disfunção Cognitiva , MicroRNAs , Animais , Camundongos , Infarto Cerebral , Disfunção Cognitiva/genética , Inflamação/complicações , MicroRNAs/genética , MicroRNAs/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
5.
Neuroreport ; 34(18): 873-886, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37942738

RESUMO

To explore a new method that patients with brain diseases such as stroke sequelae are hindered by blood-brain barrier (BBB) in clinical treatment. Research preliminarily found that acupuncture with specific mode electro-stimulation (EA) to open BBB-assisted drug delivery may be is an effective means to improve the clinical efficacy of brain disease patients. So here we further explore the features and mechanism. Middle cerebral artery occlusion/R recovery rats were employed as the animal model. Laser Doppler monitoring cerebral blood flow decreased to 45 ±â€…10% of the baseline value as modeling criteria and TTC staining observed infarcted areas of brain tissue. The permeability of FITC-Dextran and EB in the frontal lobe of rats was observed by microscope. After that, Western blot and Immunofluorescence staining for the detection of the shh and Gli1 signal molecule, Claudin-5 Occludin ZO-1 tight junction (TJ) proteins. EA can open the BBB stably and effectively, and has the characteristics of starting to close soon after the end of EA; EA inhibits the Shh-Gli1 signaling pathway, and downregulates Occludin ZO-1 TJ proteins. These results suggest that EA is safe and reversible in opening the BBB, and its mechanism is related to the inhibition of Shh signaling pathway to down-regulate the expression of TJ proteins.


Assuntos
Terapia por Acupuntura , Barreira Hematoencefálica , Humanos , Ratos , Animais , Ocludina/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteínas de Junções Íntimas/metabolismo , Transdução de Sinais
6.
Front Immunol ; 14: 1237964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849747

RESUMO

Introduction: Our previous research has found that degradation of palmitoyltransferase in tumor cells using a linear peptide PROTAC leads to a significant decrease in PD-L1 expression in tumors. However, this degradation is not a sustained and efficient process. Therefore, we designed a cyclic peptide PROTAC to achieve this efficient anti-PD-L1 effect. Methods: We designed and synthesized an improvement in linear peptide PROTAC targeting palmitoyltransferase DHHC3, and used disulfide bonds to stabilize the continuous N- and C-termini of the peptides to maintain their structure. Cellular and molecular biology techniques were used to test the effect of this cyclic peptide on PD-L1. Results: In human cervical cancer cells, our cyclic peptide PROTAC can significantly downregulate palmitoyl transferase DHHC3 and PD-L1 expressions. This targeted degradation effect is enhanced with increasing doses and treatment duration, with a DC50 value much lower than that of linear peptides. Additionally, flow cytometry analysis of fluorescence intensity shows an increase in the amount of cyclic peptide entering the cell membrane with prolonged treatment time and higher concentrations. The Cellular Thermal Shift Assay (CETSA) method used in this study indicates effective binding between our novel cyclic peptide and DHHC3 protein, leading to a change in the thermal stability of the latter. The degradation of PD-L1 can be effectively blocked by the proteasome inhibitor MG132. Results from clone formation experiments illustrate that our cyclic peptide can enhance the proliferative inhibition effect of cisplatin on the C33A cell line. Furthermore, in the T cell-C33A co-culture system, cyclic peptides target the degradation of PD-L1, thereby blocking the interaction between PD-L1 and PD-1, and promoting the secretion of IFN-γ and TNF-α in the co-culture system supernatant. Conclusion: Our results demonstrate that a disulfide-bridged cyclic peptide PROTAC targeting palmitoyltransferase can provide a stable and improved anti-PD-L1 activity in human tumor cells.


Assuntos
Peptídeos Cíclicos , Neoplasias do Colo do Útero , Feminino , Humanos , Peptídeos Cíclicos/farmacologia , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Peptídeos/farmacologia , Peptídeos/química , Transferases , Dissulfetos
7.
BMJ Open ; 13(9): e070864, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775286

RESUMO

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) represents one of the leading causes of death worldwide. Published clinical trials suggest that the Chinese patent herbal medicine Shufeng Jiedu capsule (SFJD) is safe and may be effective for treating acute exacerbations of COPD (AECOPD). However, these effects have been reported with low or very low certainty evidence. This trial aims to evaluate the effectiveness and safety of SFJD for AECOPD. METHODS AND ANALYSIS: This study is designed as a multicentre, randomised, double-blind, placebo-controlled trial. Three hundred patients with moderate or severe hospitalised AECOPD will be recruited in Beijing, Shanghai and Hefei. Participants will be randomly assigned to SFJD and usual care or placebo and usual care at a ratio of 1:1. SFJD and placebo will be administered orally four capsules three times daily for 7 consecutive days followed by an 8-week follow-up period. The primary outcome will be COPD symptom severity as measured by the EXAcerbation of Chronic Pulmonary Disease Tool score. Secondary outcomes include clinical symptoms, quality of life, length of hospital stay, a total dose of antibiotics, the frequency of recurrence of AECOPD, haematological biomarkers, death and adverse events. This study will answer the question of whether SFJD was safe to use and will improve symptoms in people with AECOPD, and will therefore reduce the necessity for antibiotics, the risk and duration of admission to hospital, and the risk of recurrence. ETHICS AND DISSEMINATION: The ethics committee of the first affiliated hospital of Anhui Medical University, Beijing University of Chinese Medicine affiliated Dongzhimen hospital and fifth people's hospital of Shanghai Fudan University approved the study protocol. Informed written consent will be obtained from all the participants. The results of this trial will be disseminated at academic conferences and in peer-reviewed publications. TRIAL REGISTRATION NUMBER: ISRCTN99049821.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Qualidade de Vida , Humanos , China , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Método Duplo-Cego , Antibacterianos/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
9.
Oncol Rep ; 50(1)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37293860

RESUMO

Following the publication of this article, a concerned reader drew to the authors' attention that a pair of the 24 h scratch­wound assay data panels in Fig. 4A, and three of the migration and invasion assay data panels in Fig. 4B, exhibited overlapping sections, suggesting that data which were intended to have shown the results from differently performed experiments had originated from the same sources. In addition, the total number of cases for the LSCC sample data in Table II did not reflect the sum of the samples indicated in the 'negative', 'positive' and 'strong positive' categories. After having consulted their original data, the authors have realized that Table II and Fig. 4 contained some inadvertent errors: The authors divided their control group data into two subgroups, namely the non­transfection and negative­shRNA groups, although they overlooked details of the filing system they had devised for saving the data, and mistakenly included images from the non­transfection group in with the negative­shRNA group due to unclear file labeling. Moreover, in Table II, the data value for the 'positive' stained samples should have been written as '43', not '44'. The corrected versions of Table II and Fig. 4, which now shows the corrected data for the 'Negative­shRNA / 24 h' experiment in Fig. 4A and the 'Non­transfection / Invasion' and 'Negative­shRNA / Migration' experiments in Fig. 4B, are shown below and on the next page, respectively. The authors sincerely apologize for the errors that were introduced during the preparation of this table and this figure, thank the Editor of Oncology Reports for granting them the opportunity to publish this corrigendum, and regret any inconvenience that these mistakes may have caused to the readership. [Oncology Reports 34: 3111­3119, 2015; DOI: 10.3892/or.2015.4274].

10.
Front Immunol ; 14: 1193222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325638

RESUMO

Introduction: Immune checkpoint inhibitors (ICIs) are monoclonal antibodies that target immune checkpoints that suppress immune cell activity. Low efficiency and high resistance are currently the main barriers to their clinical application. As a representative technology of targeted protein degradation, proteolysis-targeting chimeras (PROTACs) are considered to have potential for addressing these limitations. Methods: We synthesized a stapled peptide-based PROTAC (SP-PROTAC) that specifically targeted palmitoyltransferase ZDHHC3 and resulted in the decrease of PD-L1 in human cervical cancer cell lines. Flow cytometry, confocal microscopy, protein immunoblotting, Cellular Thermal Shift Assay (CETSA), and MTT assay analyses were conducted to evaluate the effects of the designed peptide and verify its safety in human cells. Results: In cervical cancer celllines C33A and HeLa, the stapled peptide strongly downregulated PD-L1 to < 50% of baseline level at 0.1 µM. DHHC3 expression decreased in both dosedependentand time-dependent manners. MG132, the proteasome inhibitor, can alleviate the SP-PROTAC mediated degradation of PD-L1 in human cancer cells. In a co-culture model of C33A and T cells, treatment with the peptide induced IFN-γ and TNF-α release in a dose-dependent manner by degrading PD-L1. These effects were more significant than that of the PD-L1 inhibitor, BMS-8. Conclusions: Cells treated with 0.1 µM of SP-PROTAC or BMS-8 for 4 h revealed that the stapled peptide decreased PD-L1 more effectively than BMS-8. DHHC3-targeting SP-PROTAC decreased PD-L1 in human cervical cancer more effectively than the inhibitor BMS-8.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Células HeLa , Peptídeos/farmacologia , Anticorpos Monoclonais/uso terapêutico , Linfócitos T
11.
Chem Biodivers ; 20(6): e202300373, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37162003

RESUMO

Chemical investigation of medicinal plant Glycosmis lucida Wall. ex C. C. Huang leaves led to the production of ten compounds (1-10), including two previously unreported geranylated sulfur-containing amides (1 and 2) and eight known ones (3-10). Structural characterization was carried out using comprehensive spectroscopic methods including NMR, MS and CD. The inhibitory effects of all isolates on Th17 differentiation were evaluated, of which compounds 1 and 6 significantly inhibited Th17 differentiation with IC50 values of 0.36 and 1.30 µM, respectively, while both 1 and 6 failed to bind to retinoic acid-related orphan receptor gamma t (RORγt), suggesting that their inhibition of Th17 differentiation is independent of RORγt.


Assuntos
Amidas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Amidas/farmacologia , Amidas/química , Enxofre , Diferenciação Celular
12.
Adv Sci (Weinh) ; 10(18): e2207488, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37072673

RESUMO

Cell-based therapies comprising the administration of living cells to patients for direct therapeutic activities have experienced remarkable success in the clinic, of which macrophages hold great potential for targeted drug delivery due to their inherent chemotactic mobility and homing ability to tumors with high efficiency. However, such targeted delivery of drugs through cellular systems remains a significant challenge due to the complexity of balancing high drug-loading with high accumulations in solid tumors. Herein, a tumor-targeting cellular drug delivery system (MAGN) by surface engineering of tumor-homing macrophages (Mφs) with biologically responsive nanosponges is reported. The pores of the nanosponges are blocked with iron-tannic acid complexes that serve as gatekeepers by holding encapsulated drugs until reaching the acidic tumor microenvironment. Molecular dynamics simulations and interfacial force studies are performed to provide mechanistic insights into the "ON-OFF" gating effect of the polyphenol-based supramolecular gatekeepers on the nanosponge channels. The cellular chemotaxis of the Mφ carriers enabled efficient tumor-targeted delivery of drugs and systemic suppression of tumor burden and lung metastases in vivo. The findings suggest that the MAGN platform offers a versatile strategy to efficiently load therapeutic drugs to treat advanced metastatic cancers with a high loading capacity of various therapeutic drugs.


Assuntos
Sistemas de Liberação de Medicamentos , Melanoma , Humanos , Melanoma/tratamento farmacológico , Macrófagos , Metais , Microambiente Tumoral
13.
Front Immunol ; 14: 1135657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969161

RESUMO

Background: The immune microenvironment is of great significance in cervical cancer. However, there is still a lack of systematic research on the immune infiltration environment of cervical cancer. Methods: We obtained cervical cancer transcriptome data and clinical information from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, evaluated the immune microenvironment of cervical cancer, determined immune subsets, constructed an immune cell infiltration scoring system, screened key immune-related genes, and performed single-cell data analysis and cell function analysis of key genes. Results: We combined the TCGA and GEO data sets and obtained three different immune cell populations. We obtained two gene clusters, extracted 119 differential genes, and established an immune cell infiltration (ICI) scoring system. Finally, three key genes, IL1B, CST7, and ITGA5, were identified, and single-cell sequencing data were mined to distribute these key genes in different cell types. By up-regulating CST7 and down-regulating IL1B and ITGA5, cervical cancer cells' proliferation ability and invasion ability were successfully reduced. Conclusion: We conducted a comprehensive assessment of the state of the tumor immune microenvironment in cervical cancer, constructed the ICI scoring system, and identified the ICI scoring system as a potential indicator of susceptibility to immunotherapy for cervical cancer, identifying key genes suggesting that IL1B, CST7, and ITGA5 play an essential role in cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/terapia , Imunoterapia , Prognóstico , Família Multigênica , Proliferação de Células , Microambiente Tumoral/genética
14.
Molecules ; 28(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770884

RESUMO

The epigenetic regulation of gene functions has been proven to be strongly associated with the development and progression of cancer. Reprogramming the cancer epigenome landscape is one of the most promising target therapies in both treatments and in reversing drug resistance. Proteolytic targeted chimeras (PROTACs) are an emerging therapeutic modality for selective degradation via the native ubiquitin-proteasome system. Rapid advances in PROTACs have facilitated the exploration of targeting epigenetic proteins, a lot of PROTAC degraders have already been designed in the field of epigenetic cancer therapy, and PROTACs targeting epigenetic proteins can better exploit target druggability and improve the mechanistic understanding of the epigenetic regulation of cancer. Thus, this review focuses on the progress made in the development of PROTAC degraders and PROTAC drugs targeting epigenetics in cancer and discusses challenges and future opportunities for the field.


Assuntos
Epigênese Genética , Neoplasias , Proteólise , Complexo de Endopeptidases do Proteassoma , Citoplasma , Epigenoma , Neoplasias/tratamento farmacológico , Neoplasias/genética
15.
IUBMB Life ; 75(7): 609-623, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36809563

RESUMO

Cervical cancer is one of the most common female malignant tumors, with typical cancer metabolism characteristics of increased glycolysis flux and lactate accumulation. 2-Deoxy-D-glucose (2-DG) is a glycolysis inhibitor that acts on hexokinase, the first rate-limiting enzyme in the glycolysis pathway. In this research, we demonstrated that 2-DG effectively reduced glycolysis and impaired mitochondrial function in cervical cancer cell lines HeLa and SiHa. Cell function experiments revealed that 2-DG significantly inhibited cell growth, migration, and invasion, and induced G0/G1 phase arrest at non-cytotoxic concentrations. In addition, we found that 2-DG down-regulated Wingless-type (Wnt)/ß-catenin signaling. Mechanistically, 2-DG accelerated the degradation of ß-catenin protein, which resulted in the decrease of ß-catenin expression in both nucleus and cytoplasm. The Wnt agonist lithium chloride and ß-catenin overexpression vector could partially reverse the inhibition of malignant phenotype by 2-DG. These data suggested that 2-DG exerted its anti-cancer effects on cervical cancer by co-targeting glycolysis and Wnt/ß-catenin signaling. As expected, the combination of 2-DG and Wnt inhibitor synergistically inhibited cell growth. It is noteworthy that, down-regulation of Wnt/ß-catenin signaling also inhibited glycolysis, indicating a similar positive feedback regulation between glycolysis and Wnt/ß-catenin signaling. In conclusion, we investigated the molecular mechanism by which 2-DG inhibits the progression of cervical cancer in vitro, elucidated the interregulation between glycolysis and Wnt/ß-catenin signaling, and preliminarily explored the effect of combined targeting of glycolysis and Wnt/ß-catenin signaling on cell proliferation, which provides more possibilities for the formulation of subsequent clinical treatment strategies.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Glucose/farmacologia , Via de Sinalização Wnt/genética , Glicólise , Desoxiglucose/farmacologia , Proliferação de Células , Movimento Celular , Regulação Neoplásica da Expressão Gênica
16.
Environ Health Perspect ; 131(1): 17009, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719213

RESUMO

BACKGROUND: Recurrent miscarriage (RM) affects 1%-3% of pregnancies. However, in almost 50% of cases, the cause is unknown. Increasing evidence have shown that benzo(a)pyrene [B(a)P], a representative of polycyclic aromatic hydrocarbons (PAHs), is correlated with miscarriage. However, the underlying mechanisms of B(a)P/benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE)-induced trophoblast cell dysfunctions and miscarriage remain largely unknown. OBJECTIVE: The objective was to discover the role(s) of a novel lncRNA, lnc-HZ09, in the regulation of BPDE-inhibited migration and invasion of trophoblast cells and the occurrence of miscarriage. METHOD: Human trophoblast cells were treated with 0, 0.25, 0.5, 1.0, or 1.5µM BPDE with or without corresponding lnc-HZ09 silencing or overexpression. Using these cells, we evaluated cell migration and invasion, the mRNA and protein levels of members of the PLD1/RAC1/CDC42 pathway, the regulatory roles of lnc-HZ09 in PLD1 transcription and mRNA stability, and lnc-HZ09 transcription and stability. Human villous tissues were collected from RM (n=15) group and their matched healthy control (HC, n=15) group. We evaluated the levels of BPDE-DNA adducts, lnc-HZ09, and the mRNA and protein expression of members of the PLD1/RAC1/CDC42 pathway, and correlated their relative expression levels. We further constructed 0, 0.05 or 0.2mg/kg B(a)P-induced mouse miscarriage model (each n=6), in which the mRNA and protein expression of members of the Pld1/Rac1/Cdc42 pathway were measured. RESULTS: We identified a novel lnc-HZ09. Human trophoblast cells treated with lnc-HZ09 exhibited less cell migration and invasion. In addition, the levels of this lncRNA were higher in villous tissues from women with recurrent miscarriage than those from healthy individuals. SP1-mediated PLD1 mRNA levels were lower, and HuR-mediated PLD1 mRNA stability was less in trophoblast cells overexpressing lnc-HZ09. However, trophoblast cells treated with MSX1 had higher levels of lnc-HZ09, and METTL3-mediated m6A methylation on lnc-HZ09 resulted in greater lnc-HZ09 RNA stability. In BPDE-treated human trophoblast cells and in RM villous tissues, MSX1-mediated lnc-HZ09 transcription and METTL3-mediated lnc-HZ09 stability were both greater. In our mouse miscarriage model, B(a)P-treated mice had lower mRNA and protein levels of members of the Pld1/Rac1/Cdc42 pathway. DISCUSSION: These results suggest that in human trophoblast cells, BPDE exposure up-regulated lnc-HZ09 level, suppressed PLD1/RAC1/CDC42 pathway, and inhibited migration and invasion, providing new insights in understanding the causes and mechanisms of unexplained miscarriage. https://doi.org/10.1289/EHP10477.


Assuntos
Aborto Habitual , RNA Longo não Codificante , Gravidez , Humanos , Feminino , Camundongos , Animais , Trofoblastos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , RNA Longo não Codificante/genética , Benzo(a)pireno/metabolismo , Aborto Habitual/genética , Aborto Habitual/metabolismo , RNA Mensageiro/metabolismo , Metiltransferases/metabolismo
17.
J Med Virol ; 95(1): e28283, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36333280

RESUMO

We agree that smoking might be a risk factor for the severity of COVID-19, but in our previous study, smoking was not so robust compared with our conclusion. Also, we strongly agreed that COVID-19 patients with diabetes or other chronic diseases might worsen the situation of the disease. But these factors were out of the scope of our study and we had published other research on this topic related to diabetes. Because of the limited sample size and original medical records, our study could not cover many factors. But we wish our study will be a useful and meaningful pilot study for future studies.

18.
Adv Healthc Mater ; 12(5): e2201578, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36353840

RESUMO

The development of bioadhesives is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, that is, strong adhesion, water resistance, and high biocompatibility. Here, a biocompatible and biodegradable protein-based bioadhesive patch (PBP) with high adhesion strength and low immunogenic response is reported. PBP exists as a strong adhesion for biological surfaces, which is higher than some conventional bioadhesives (i.e., polyethylene glycol and fibrin). Robust adhesion and strength are realized through the removal of interfacial water and fast formation of multiple supramolecular interactions induced by metal ions. The PBP's high biocompatibility is evaluated and immunogenic response in vitro and in vivo is neglected. The strong adhesion on soft biological tissues qualifies the PBP as biomedical glue outperforming some commercial products for applications in hemostasis performance, accelerated wound healing, and sealing of defected organs, anticipating to be useful as a tissue adhesive and sealant.


Assuntos
Adesivos Teciduais , Adesivos Teciduais/farmacologia , Cicatrização , Polietilenoglicóis , Hidrogéis/farmacologia , Proteínas , Adesivos/farmacologia
19.
Front Immunol ; 14: 1109122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38223507

RESUMO

Female fertility decline is an accumulative consequence caused by complex factors, among them, the disruption of the immune profile in female reproduction stands out as a crucial contributor. Presently, the effects of immune microenvironment (IME) on the female reproductive process have attracted increasing attentions for their dynamic but precisive roles. Immunocytes including macrophages, dendritic cells, T cells, B cells and neutrophils, with diverse subpopulations as well as high plasticity functioned dynamically in the process of female reproduction through indirect intercellular communication via specific cytokine release transduced by molecular signal networks or direct cell-cell contact to maintain the stability of the reproductive process have been unveiled. The immune profile of female reproduction in each stage has also been meticulously unveiled. Especially, the application of single-cell sequencing (scRNA-seq) technology in this process reveals the distribution map of immune cells, which gives a novel insight for the homeostasis of IME and provides a research direction for better exploring the role of immune cells in female reproduction. Here, we provide an all-encompassing overview of the latest advancements in immune modulation within the context of the female reproductive process. Our approach involves structuring our summary in accordance with the physiological sequence encompassing gonadogenesis, folliculogenesis within the ovaries, ovulation through the fallopian tubes, and the subsequent stages of embryo implantation and development within the uterus. Our overarching objective is to construct a comprehensive portrayal of the immune microenvironment (IME), thereby accentuating the pivotal role played by immune cells in governing the intricate female reproductive journey. Additionally, we emphasize the pressing need for heightened attention directed towards strategies that focus on immune interventions within the female reproductive process, with the ultimate aim of enhancing female fertility.


Assuntos
Implantação do Embrião , Reprodução , Feminino , Humanos , Reprodução/fisiologia , Útero , Ovário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA