Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Redox Biol ; 72: 103154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626575

RESUMO

Continuous remodeling of the heart can result in adverse events such as reduced myocardial function and heart failure. Available evidence indicates that ferroptosis is a key process in the emergence of cardiac disease. P2 family purinergic receptor P2X7 receptor (P2X7R) activation plays a crucial role in numerous aspects of cardiovascular disease. The aim of this study was to elucidate any potential interactions between P2X7R and ferroptosis in cardiac remodeling stimulated by angiotensin II (Ang II), and P2X7R knockout mice were utilized to explore the role of P2X7R and elucidate its underlying mechanism through molecular biological methods. Ferroptosis is involved in cardiac remodeling, and P2X7R deficiency significantly alleviates cardiac dysfunction, remodeling, and ferroptosis induced by Ang II. Mechanistically, Ang II interacts with P2X7R directly, and LYS-66 and MET-212 in the in the ATP binding pocket form a binding complex with Ang II. P2X7R blockade influences HuR-targeted GPX4 and HO-1 mRNA stability by affecting the shuttling of HuR from the nucleus to the cytoplasm and its expression. These results suggest that focusing on P2X7R could be a possible therapeutic approach for the management of hypertensive heart failure.


Assuntos
Angiotensina II , Ferroptose , Receptores Purinérgicos P2X7 , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Animais , Angiotensina II/metabolismo , Camundongos , Humanos , Camundongos Knockout , Remodelação Ventricular , Miocárdio/metabolismo , Miocárdio/patologia , Masculino , Ligação Proteica , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/genética
2.
Langmuir ; 40(3): 1922-1930, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38211333

RESUMO

Long running-in period and corrosion problems have greatly hindered the practical applications of poly(ethylene glycol) (PEG) lubricants. In this work, benzotriazole group-terminated carbon dots (BT-CDs) were specifically synthesized through a facile solvothermal method. The benzotriazole groups on BT-CD surfaces not only imparted them excellent dispersibility in the PEG base oil but also brought in outstanding anticorrosion ability for BT-CDs. With the aid of the coordination effects between benzotriazole groups and metal atoms, the BT-CDs could quickly and solidly adsorb onto the steel surface to form a dense adsorption layer, which resulted in an amazing phenomenon, i.e., the disappearance of the running-in period for the friction test. Adding 5.0 wt % BT-CDs reduced the friction and wear of PEG200 by 49.16 and 49.52%, respectively. When the duration was prolonged from 20 to 120 min, these values were further enlarged to 53.77 and 60.71%. The worn surface characterization demonstrated that the BT-CDs induced the generation of robust lubricating films on the frictional interfaces, accounting for their distinguished tribological performance. Considering the superior anticorrosion ability and the potential possibility of avoiding the running-in period, the BT-CDs are expected to be developed as particularly promising additives toward PEG.

3.
Plant Physiol ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245840

RESUMO

The hemibiotrophic bacterial pathogen Pseudomonas syringae infects a range of plant species and causes enormous economic losses. Auxin and WRKY transcription factors play crucial roles in plant responses to Pseudomonas syringae, but their functional relationship in plant immunity remains unclear. Here, we characterized tomato (Solanum lycopersicum) SlWRKY75, which promotes defenses against Pseudomonas syringae pv. tomato (Pst) DC3000 by regulating plant auxin homeostasis. Overexpressing SlWRKY75 resulted in low free indole-3-acetic acid (IAA) levels, leading to attenuated auxin signaling, decreased expansin transcript levels, upregulated expression of PATHOGENESIS-RELATED GENES (PRs) and NONEXPRESSOR OF PATHOGENESIS-RELATED GENE 1 (NPR1), and enhanced tomato defenses against Pst DC3000. RNA interference-mediated repression of SlWRKY75 increased tomato susceptibility to Pst DC3000. Yeast one-hybrid, electrophoretic mobility shift assays, and luciferase activity assays suggested that SlWRKY75 directly activates the expression of GRETCHEN HAGEN 3.3 (SlGH3.3), which encodes an IAA-amido synthetase. SlGH3.3 enhanced tomato defense against Pst DC3000 by converting free IAA to the aspartic acid (Asp)-conjugated form IAA-Asp. In addition, SlWRKY75 interacted with a tomato valine-glutamine (VQ) motif-containing protein 16 (SlVQ16) in vivo and in vitro. SlVQ16 enhanced SlWRKY75-mediated transcriptional activation of SlGH3.3 and promoted tomato defense responses to Pst DC3000. Our findings illuminate a mechanism in which the SlVQ16-SlWRKY75 complex participates in tomato pathogen defense by positively regulating SlGH3.3-mediated auxin homeostasis.

4.
Basic Res Cardiol ; 118(1): 40, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37782407

RESUMO

Activation of gasdermin D (GSDMD) and its concomitant cardiomyocyte pyroptosis are critically involved in multiple cardiac pathological conditions. Pharmacological inhibition or gene knockout of GSDMD could protect cardiomyocyte from pyroptosis and dysfunction. Thus, seeking and developing highly potent GSDMD inhibitors probably provide an attractive strategy for treating diseases targeting GSDMD. Through structure-based virtual screening, pharmacological screening and subsequent pharmacological validations, we preliminarily identified GSDMD inhibitor Y1 (GI-Y1) as a selective GSDMD inhibitor with cardioprotective effects. Mechanistically, GI-Y1 binds to GSDMD and inhibits lipid- binding and pyroptotic pore formation of GSDMD-N by targeting the Arg7 residue. Importantly, we confirmed the cardioprotective effect of GI-Y1 on myocardial I/R injury and cardiac remodeling by targeting GSDMD. More extensively, GI-Y1 also inhibited the mitochondrial binding of GSDMD-N and its concomitant mitochondrial dysfunction. The findings of this study identified a new drug (GI-Y1) for the treatment of cardiac disorders by targeting GSDMD, and provide a new tool compound for pyroptosis research.


Assuntos
Cardiopatias , Traumatismo por Reperfusão , Humanos , Piroptose , Miócitos Cardíacos , Isquemia , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros
5.
BMC Biol ; 21(1): 208, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798721

RESUMO

BACKGROUND: Domestication and introduction of dairy animals facilitated the permanent human occupation of the Tibetan Plateau. Yet the history of dairy pastoralism in the Tibetan Plateau remains poorly understood. Little is known how Tibetans adapted to milk and dairy products. RESULTS: We integrated archeological evidence and genetic analysis to show the picture that the dairy ruminants, together with dogs, were introduced from West Eurasia into the Tibetan Plateau since ~ 3600 years ago. The genetic admixture between the exotic and indigenous dogs enriched the candidate lactase persistence (LP) allele 10974A > G of West Eurasian origin in Tibetan dogs. In vitro experiments demonstrate that - 13838G > A functions as a LP allele in Tibetans. Unlike multiple LP alleles presenting selective signatures in West Eurasians and South Asians, the de novo origin of Tibetan-specific LP allele - 13838G > A with low frequency (~ 6-7%) and absence of selection corresponds - 13910C > T in pastoralists across eastern Eurasia steppe. CONCLUSIONS: Results depict a novel scenario of genetic and cultural adaptations to diet and expand current understanding of the establishment of dairy pastoralism in the Tibetan Plateau.


Assuntos
Criação de Animais Domésticos , Povo Asiático , Dieta , Leite , Animais , Cães/genética , Humanos , Tibet , Ruminantes
6.
Phytomedicine ; 121: 155105, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801893

RESUMO

BACKGROUND: Doxorubicin (Dox), which is an anticancer drug, has significant cardiac toxicity and side effects. Pyroptosis occurs during Dox-induced cardiotoxicity (DIC), and drug inhibition of this process is one therapeutic approach for treating DIC. Previous studies have indicated that emodin can reduce pyroptosis. However, the role of emodin in DIC and its molecular targets remain unknown. HYPOTHESIS/PURPOSE: We aimed to clarify the protective role of emodin in mitigating DIC, as well as the mechanisms underlying this effect. METHODS: The model of DIC was established via the intraperitoneal administration of Dox at a dosage of 5 mg/kg per week for a span of 4 weeks. Emodin at two different doses (10 and 20 mg/kg) or a vehicle was intragastrically administered to the mice once per day throughout the Dox treatment period. Cardiac function, myocardial injury markers, pathological morphology of the heart, level of pyroptosis and mitochondrial function were assessed. Protein microarray, biolayer interferometry and pull-down assays were used to confirm the target of emodin. Moreover, GSDMD-overexpressing plasmids were transfected into GSDMD-/- mice and HL-1 cells to further verify whether emodin suppressed GSDMD activation. RESULTS: Emodin therapy markedly enhanced cardiac function and reduced cardiomyocyte pyroptosis in mice induced by Dox. Mechanistically, emodin binds to GSDMD and inhibits the activation of GSDMD by targeting the Trp415 and Leu290 residues. Moreover, emodin was able to mitigate Dox-induced cardiac dysfunction and myocardial injury in GSDMD-/- mice overexpressing GSDMD, as shown by increased EF and FS, decreased serum levels of CK-MB, LDH and IL-1ß and mitigated cell death and cell morphological disorder. Additionally, emodin treatment significantly reduced GSDMD-N expression and plasma membrane disruption in HL-1 cells overexpressing GSDMD induced by Dox. In addition, emodin reduced mitochondrial damage by alleviating Dox-induced GSDMD perforation in the mitochondrial membrane. CONCLUSION: Emodin has the potential to attenuate DIC by directly binding to GSDMD to inhibit pyroptosis. Emodin may become a promising drug for prevention and treatment of DIC.


Assuntos
Emodina , Miócitos Cardíacos , Camundongos , Animais , Piroptose , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Emodina/farmacologia , Doxorrubicina/farmacologia
7.
Front Pediatr ; 11: 1163368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576136

RESUMO

Objective: This study aimed to retrospectively describe the unplanned retreatment of dental general anesthesia (DGA) in children with severe early childhood caries (S-ECC) and explore potential factors that may influence the outcome of DGA treatment. Methods: Medical records of children with S-ECC who received DGA treatment were screened, and necessary data were extracted. The Kaplan-Meier method and Cox proportional hazards model were used to estimate the DGA survival rate and explore the potential factors affecting the success rate of DGA treatment. Results: Medical records of 852 children were included; 509 (59.7%) children with 1,212 (10.7%) teeth underwent unplanned retreatment. Restoration failure (30.12%) and new caries (29.46%) accounted for the most significant proportion of all failures. The median survival times were 510 and 1,911 days at the child and tooth levels, respectively. Unplanned retreatment risk was associated with the age of S-ECC children, frequency of follow-up, and fluoride application (hazard ratio = 0.97, 0.78, 0.69, P < 0.001). Conclusion: The treatment outcome of DGA administered to children with S-ECC was satisfactory at the tooth level from the perspective of the incidence of unplanned retreatment. Restoration failure was the main reason for the high unplanned retreatment rate. Strategies for a better outcome of DGA include improving the professional knowledge and skills of pediatric dentists and enhancing compliance of parents/patients. Health education and regular topical fluoride application may improve the success rate of DGA treatment.

8.
Plant Physiol ; 192(3): 2067-2080, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36891812

RESUMO

ETHYLENE-INSENSITIVE 3/ETHYLENE-INSENSITIVE 3-LIKEs (EIN3/EILs) are important ethylene response factors during fruit ripening. Here, we discovered that EIL2 controls carotenoid metabolism and ascorbic acid (AsA) biosynthesis in tomato (Solanum lycopersicum). In contrast to the red fruits presented in the wild type (WT) 45 d after pollination, the fruits of CRISPR/Cas9 eil2 mutants and SlEIL2 RNA interference lines (ERIs) showed yellow or orange fruits. Correlation analysis of transcriptome and metabolome data for the ERI and WT ripe fruits revealed that SlEIL2 is involved in ß-carotene and AsA accumulation. ETHYLENE RESPONSE FACTORs (ERFs) are the typical components downstream of EIN3 in the ethylene response pathway. Through a comprehensive screening of ERF family members, we determined that SlEIL2 directly regulates the expression of 4 SlERFs. Two of these, SlERF.H30 and SlERF.G6, encode proteins that participate in the regulation of LYCOPENE-ß-CYCLASE 2 (SlLCYB2), encoding an enzyme that mediates the conversion of lycopene to carotene in fruits. In addition, SlEIL2 transcriptionally repressed L-GALACTOSE 1-PHOSPHATE PHOSPHATASE 3 (SlGPP3) and MYO-INOSITOL OXYGENASE 1 (SlMIOX1) expression, which resulted in a 1.62-fold increase of AsA via both the L-galactose and myoinositol pathways. Overall, we demonstrated that SlEIL2 functions in controlling ß-carotene and AsA levels, providing a potential strategy for genetic engineering to improve the nutritional value and quality of tomato fruit.


Assuntos
Solanum lycopersicum , beta Caroteno , beta Caroteno/metabolismo , Licopeno/metabolismo , Solanum lycopersicum/genética , Ácido Ascórbico/metabolismo , Galactose/metabolismo , Etilenos/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Plant J ; 114(6): 1385-1404, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36948885

RESUMO

Chilling stress seriously impairs photosynthesis and activates a series of molecular responses in plants. Previous studies have shown that ETHYLENE INSENSITIVE 3 (EIN3) and EIN3-like (SlEIL) proteins mediate ethylene signaling and reduce plant tolerance to freezing in tomato (Solanum lycopersicum). However, the specific molecular mechanisms underlying an EIN3/EILs-mediated photoprotection pathway under chilling stress are unclear. Here, we discovered that salicylic acid (SA) participates in photosystem II (PSII) protection via SlEIL2 and SlEIL7. Under chilling stress, the phenylalanine ammonia-lyase gene SlPAL5 plays an important role in the production of SA, which also induces WHIRLY1 (SlWHY1) transcription. The resulting accumulation of SlWHY1 activates SlEIL7 expression under chilling stress. SlEIL7 then binds to and blocks the repression domain of the heat shock factor SlHSFB-2B, releasing its inhibition of HEAT SHOCK PROTEIN 21 (HSP21) expression to maintain PSII stability. In addition, SlWHY1 indirectly represses SlEIL2 expression, allowing the expression of l-GALACTOSE-1-PHOSPHATE PHOSPHATASE3 (SlGPP3). The ensuing higher SlGPP3 abundance promotes the accumulation of ascorbic acid (AsA), which scavenges reactive oxygen species produced upon chilling stress and thus protects PSII. Our study demonstrates that SlEIL2 and SlEIL7 protect PSII under chilling stress via two different SA response mechanisms: one involving the antioxidant AsA and the other involving the photoprotective chaperone protein HSP21.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Complexo de Proteína do Fotossistema II/metabolismo , Ácido Salicílico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Ascórbico/metabolismo , Etilenos , Temperatura Baixa
10.
Artigo em Inglês | MEDLINE | ID: mdl-36673947

RESUMO

OBJECTIVES: This study aims to retrospectively evaluate the survival rate of pulpectomy performed under dental general anesthesia (DGA) through long-term follow-up and to explore the risk factors associated with treatment failure. METHODS: The medical records of the children who were diagnosed with S-ECC and received pulpectomy treatment under general anesthesia (GA) from 1 August 2014 to 1 December 2019, in the Stomatological Hospital of Xi'an Jiaotong University, were collected. Two dentistry postgraduates extracted the necessary information and filled in a predesigned excel form. Survival analysis was performed using the Kaplan-Meier method. The shared frailty model was used to explore possible factors affecting the success rate of pulpectomy in primary teeth. RESULTS: A total of 381 children (mean age 3.49 ± 0.90) with S-ECC and 1220 teeth were included in the study, including 590 primary anterior teeth and 630 primary molars. The overall 35-month survival rate was 38.5%, which was 52.9% for anterior teeth and 31.1% for molars. The overall median survival time was 31 months, in which anterior teeth were 35 months and molars were 26 months. The older the children were, the greater the risk of treatment failure (HR 1.56, 95% CI 1.09, 2.24). The risk of pulpectomy failure of primary molars was 1.9 times that of primary anterior teeth (95% CI 1.36, 2.65) and the teeth with abnormal radiological findings before treatment was 1.41 times higher than that of teeth without imaging abnormalities (95% CI 1.74, 3.36). CONCLUSION: The survival rate of primary tooth pulpectomy is acceptable but decreased gradually with time. The failure rate of pulpectomy in primary molars is higher than that of primary anterior teeth. When the primary caries has extended to the pulp and resulted in a nonvital lesion, pulpectomy could be an option for maximum retention of the primary tooth.


Assuntos
Cárie Dentária , Pulpectomia , Humanos , Criança , Pré-Escolar , Pulpectomia/métodos , Estudos Retrospectivos , Suscetibilidade à Cárie Dentária , Dente Decíduo , Anestesia Geral , Fatores de Risco , Análise de Sobrevida , Cárie Dentária/epidemiologia , Cárie Dentária/cirurgia
11.
J Mol Model ; 29(1): 29, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36585977

RESUMO

BACKGROUND: This paper focuses on the chemical and physical adsorption of 1-hexyl-2,3-dimethyl imidazolium bromide (HDMIMBr), 1-decyl-2,3-dimethyl imidazolium bromide (DDMIMBr), and 1-hexadecyl-2,3-dimethyl imidazolium bromide (C16DMIMBr) on the surface of mild steel at high temperature in order to explore the mechanism of a corrosion inhibitor in a complex environment. METHODS: Gravimetric, scanning electron microscope, X-ray photoelectron spectroscopy, and electrochemical tests explored the corrosion inhibition performance from the experimental level. Quantum chemical calculations and molecular dynamics simulations reveal the corrosion inhibition mechanism from the molecular scale. RESULTS: The results show that the longer the alkyl chain of the three corrosion inhibitors studied, the better the corrosion inhibition performance. This is due to the hydrophobic effect of the long alkyl chain, which has its own synergistic effect and then self-assembles to form an adsorption film with a multilayer structure. CONCLUSION: This dense adsorption film makes corrosion inhibitors a good application prospect in complex corrosive environments.

12.
Hypertension ; 79(11): 2505-2518, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36065823

RESUMO

BACKGROUND: Cardiac hypertrophy is initially an adaptive response of cardiomyocytes to neurohumoral or hemodynamic stimuli. Evidence indicates that Ang II (angiotensin II) or pressure overload causes GSDMD (gasdermin D) activation in cardiomyocytes and myocardial tissues. However, the direct impact of GSDMD on cardiac hypertrophy and its underlying mechanisms are not fully understood. METHODS AND RESULTS: In this study, we examined the aberrant activation of GSDMD in mouse and human hypertrophic myocardia, and the results showed that GSDMD deficiency reduced Ang II or pressure overload-induced cardiac hypertrophy, dysfunction, and associated cardiomyocyte pyroptosis in mice. Mechanistically, Ang II-mediated GSDMD cleavage caused mitochondrial dysfunction upstream of STING (stimulator of interferon genes) activation in vivo and in vitro. Activation of STING, in turn, potentiated GSDMD-mediated cardiac hypertrophy. Moreover, deficiency of both GSDMD and STING suppressed cardiac hypertrophy in cardiac-specific GSDMD-overexpressing mice. CONCLUSIONS: Based on these findings, we propose a mechanism by which GSDMD generates a self-amplifying, positive feed-forward loop with the mitochondria-STING axis. This finding points to the prospects of GSDMD as a key therapeutic target for hypertrophy-associated heart diseases.


Assuntos
Cardiomegalia , Interferons , Camundongos , Humanos , Animais , Interferons/efeitos adversos , Interferons/metabolismo , Cardiomegalia/patologia , Angiotensina II/farmacologia , Miócitos Cardíacos/metabolismo , Mitocôndrias/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/efeitos adversos , Proteínas de Ligação a Fosfato/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
13.
BMC Biotechnol ; 22(1): 27, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180909

RESUMO

BACKGROUND: Lymphocytic leukemia (LL) is a primary malignant tumor of hematopoietic tissue, which seriously affects the health of children and the elderly. The study aims to establish a new detection method for screening acute/chronic LL using time-resolved fluorescence immunoassay (TRFIA) via quantitative detection of S100 calcium binding protein A8 (S100A8) and leucine-rich alpha-2-glycoprotein 1 (LRG1) in serum. METHODS: Here a sandwich TRFIA was optimized and established: Anti-S100A8/LRG1 caputre antibodies immobilized on 96-well plates captured S100A8/LRG1, and then banded together with the anti-S100A8/LRG1 detection antibodies labeled with Europium(III) (Eu3+)/samarium(III) (Sm3+) chelates. Finally time resolved fluorometry measured the fluorescence intensity. RESULTS: The sensitivity of S100A8 was 1.15 ng/mL(LogY = 3.4027 + 0.4091 × LogX, R2 = 0.9828, P < 0.001, dynamic range: 2.1-10,000 ng/mL), and 3.2 ng/mL for LRG1 (LogY = 3.3009 + 0.4082 × LogX, R2 = 0.9748, P < 0.001, dynamic range: 4.0-10,000 ng/mL). The intra-assay and inter-assay CVs were low, ranging from 5.75% to 8.23% for S100A8 and 5.30% to 9.45% for LRG1 with high specificity and affinity in serum samples. Bland-Altman plots indicated TRFIA and ELISA kits have good agreement in clinical serum samples. Additionally, the cutoff values for S100A8 and LRG1 were 1849.18 ng/mL and 588.08 ng/mL, respectively. CONCLUSION: The present TRFIA method could be used for the quantitative detection of S100A8 and LRG1 in serum, and it has high sensitivity, accuracy and specificity. Clinically, this TRFIA method could be suitable for screening of LL via the quantitative detection of S100A8 and LRG1.


Assuntos
Európio , Leucemia Linfocítica Crônica de Células B , Idoso , Proteínas de Ligação ao Cálcio , Criança , Fluorimunoensaio/métodos , Glicoproteínas , Humanos , Leucina , Leucemia Linfocítica Crônica de Células B/diagnóstico , Samário , Sensibilidade e Especificidade
14.
Mol Biol Evol ; 39(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36006373

RESUMO

The diversity of Central Asians has been shaped by multiple migrations and cultural diffusion. Although ancient DNA studies have revealed the demographic changes of the Central Asian since the Bronze Age, the contribution of the ancient populations to the modern Central Asian remains opaque. Herein, we performed high-coverage sequencing of 131 whole genomes of Indo-European-speaking Tajik and Turkic-speaking Kyrgyz populations to explore their genomic diversity and admixture history. By integrating the ancient DNA data, we revealed more details of the origins and admixture history of Central Asians. We found that the major ancestry of present-day Tajik populations can be traced back to the admixture of the Bronze Age Bactria-Margiana Archaeological Complex and Andronovo-related populations. Highland Tajik populations further received additional gene flow from the Tarim mummies, an isolated ancient North Eurasian-related population. The West Eurasian ancestry of Kyrgyz is mainly derived from Historical Era populations in Xinjiang of China. Furthermore, the recent admixture signals detected in both Tajik and Kyrgyz are ascribed to the expansions of Eastern Steppe nomadic pastoralists during the Historical Era.


Assuntos
DNA Antigo , Múmias , Povo Asiático/genética , Etnicidade , Fluxo Gênico , Genética Populacional , Humanos
15.
Langmuir ; 38(31): 9567-9574, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35881913

RESUMO

Phase-selective organogelators (PSOGs) have recently attracted more attention because of their advantages in handling oil spills and leaked organic solvents. However, it is difficult to separate and recover the organic phase and PSOGs from organic gels due to the strong interaction between them. Aiming to enhance the separation and recovery performance of the organic phase and PSOGs, we synthesized a series of pH-responsive PSOGs by using itaconic anhydride and fatty amines with carbon chain lengths of C12-C18. Here, PSOGs have an excellent gelation ability in that amounts of organic solvents and fuel oil can be solidified at a low concentration (<3 wt %). It is worth noting that these gels are stronger, which is more convenient for removal by a salvage operation. More importantly, compared with traditional organogelators, pH-responsive PSOGs can easily recover the organic phase and fuel oil with an adjustment of the pH without extraction or distillation. Because of the transformation between the hydrophilicity and hydrophobicity of PSOGs by pH stimulation, 83.15% PSOGs are recovered in three-cycle experiments. In addition, the recycled PSOGs can be used to realize the removal of the organic phase again. Herein, we find that pH-responsive PSOGs could be used as promising and sustainable materials for separating and recovering organic solvents/oils and PSOGs.


Assuntos
Óleos Combustíveis , Poluição por Petróleo , Ácidos Carboxílicos , Géis/química , Concentração de Íons de Hidrogênio , Poluição por Petróleo/análise , Solventes/química
16.
Front Plant Sci ; 13: 858477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645995

RESUMO

The transition of plants to land required several regulatory adaptive mechanisms. Little is known about these mechanisms, but they no doubt involved the evolution of transcription factor (TF) families. ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE (EIL) transcription factors (TFs) are core components of the ethylene signaling pathway that play important roles in almost every aspect of plant development and environmental responses by regulating the transcription of numerous genes. However, the evolutionary history of EIN3/EIL TFs, which are present in a wide range of streptophytes, is still not clear. Here, to explore the evolution and functions of EIN3/EIL TFs, we performed phylogenetic analysis of these TFs and investigated their gene and protein structures as well as sequence features. Our results suggest that the EIN3/EIL TF family was already was already present in the ancestor of streptophyte algae. Phylogenetic analysis divided the EIN3/EIL TFs into three groups (Group A-C). Analysis of gene and protein structure revealed that most of the structural features of these TFs had already formed in ancient lineages. Further investigation suggested that all groups have undergone several duplication events related to whole-genome duplications in plants, generating multiple, functionally diverse gene copies. Therefore, as plants colonized terrestrial habitats and evolved key traits, the EIN3/EIL TF family expanded broadly via multiple duplication events, which could have promoted their fundamental neo- and sub-functionalization to help plants adapt to terrestrial life. Our findings shed light on the functional evolution of the EIN3/EIL TF family in the streptophytes.

17.
Transl Res ; 248: 36-50, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545198

RESUMO

Doxorubicin (Dox), as a widely used anthracycline antitumor drug, can cause severe cardiotoxicity. Cardiomyocyte death and inflammation are involved in the pathophysiology of Dox-induced cardiotoxicity (DIC). Gasdermin D (GSDMD) is known as a key executioner of pyroptosis, which is a pro-inflammatory programmed cell death. We aimed to investigate the impact of GSDMD on DIC and systematically reveal its underlying mechanisms. Our findings indicated that Dox induced cardiomyocyte pyroptosis in a GSDMD-dependent manner by utilizing siRNA or overexpression-plasmid technique. We then generated GSDMD global knockout mice via CRISPR/Cas9 system and found that GSDMD deficiency reduced Dox-induced cardiomyopathy. Dox induced the activation of inflammatory caspases, which subsequently mediated GSDMD-N generation indirectly. Using molecular dynamics simulation and cell-free systems, we confirmed that Dox directly bound to GSDMD and facilitated GSDMD-N-mediated pyroptosis. Furthermore, GSDMD also mediated Dox-induced mitochondrial damage via Bnip3 and mitochondrial perforation in cardiomyocytes. These findings provide fresh insights into the mechanism of how Dox-engaged GSDMD orchestrates adverse cardiotoxicity and highlight the prospects of GSDMD as a potential target for DIC.


Assuntos
Cardiotoxicidade , Piroptose , Animais , Doxorrubicina , Camundongos , Miócitos Cardíacos
18.
Cardiovasc Ther ; 2022: 3167959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360548

RESUMO

Myocardial remodeling is one of the main lesions in the late stage of chronic heart failure and seriously affects the prognosis of patients. Continuous activation of the renin-angiotensin-aldosterone system (RAAS) contributes to the development of myocardial remodeling greatly, and angiotensin II (Ang II), its main constituent, can directly lead to cardiac remodeling through an inflammatory response and oxidative stress. Since Ang II-induced myocardial remodeling is closely related to inflammation, we tried to explore whether the anti-inflammatory drug oridonin (Ori) can reverse this process and its possible mechanism. Our study investigated that hypertrophy and fibrosis can be induced after being treated with Ang II in cardiomyocytes (H9c2 cells and primary rat cardiomyocytes) and C57BL/6J mice. The anti-inflammatory drug oridonin could effectively attenuate the degree of cardiac remodeling both in vivo and vitro by inhibiting GSDMD, a key protein of intracellular inflammation which can further activate kinds of inflammation factors such as IL-1ß and IL-18. We illustrated that oridonin reversed cardiac remodeling by inhibiting the process of inflammatory signaling through GSDMD. After inhibiting the expression of GSDMD in cardiomyocytes by siRNA, it was found that Ang II-induced hypertrophy was attenuated. These results suggest that oridonin is proved to be a potential protective drug against GSDMD-mediated inflammation and myocardial remodeling.


Assuntos
Angiotensina II , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Remodelação Ventricular , Animais , Diterpenos do Tipo Caurano , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Ratos
19.
BMC Public Health ; 22(1): 416, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35232400

RESUMO

BACKGROUND: Depression has received a lot of attention as a common and serious illness. However, people are rarely aware of their current depression risk probabilities. We aimed to develop and validate a predictive model applicable to the risk of depression in US adults. METHODS: This study was conducted using the database of the National Health and Nutrition Examination Survey (NHANES, 2017-2012). In particular, NHANES (2007-2010) was used as the training cohort (n = 6015) for prediction model construction and NHANES (2011-2012) was used as the validation cohort (n = 2812) to test the model. Depression was assessed (defined as a binary variable) by the Patient Health Questionnaire (PHQ-9). Socio-demographic characteristics, sleep time, illicit drug use and anxious days were assessed using a self-report questionnaire. Logistic regression analysis was used to evaluate independent risk factors for depression. The nomogram has the advantage of being able to visualize complex statistical prediction models as risk estimates of individualized disease probabilities. Then, we developed two depression risk nomograms based on the results of logistic regression. Finally, several validation methods were used to evaluate the prediction performance of nomograms. RESULTS: The predictors of model 1 included gender, age, income, education, marital status, sleep time and illicit drug use, and model 2, furthermore, included anxious days. Both model 1 and model 2 showed good discrimination ability, with a bootstrap-corrected C index of 0.71 (95% CI, 0.69-0.73) and 0.85 (95% CI, 0.83-0.86), and an externally validated C index of 0.71 (95% CI, 0.68-0.74) and 0.83 (95% CI, 0.81-0.86), respectively, and had well-fitted calibration curves. The area under the receiver operating characteristic curve (AUC) values of the models with 1000 different weighted random sampling and depression scores of 10-17 threshold range were higher than 0.7 and 0.8, respectively. Calculated net reclassification improvement (NRI) and integrated discrimination improvement (IDI) showed the discrimination or accuracy of the prediction models. Decision curve analysis (DCA) demonstrated that the depression models were practically useful. The network calculators work for participants to make personalized predictions. CONCLUSIONS: This study presents two prediction models of depression, which can effectively and accurately predict the probability of depression as well as helping the U.S. civilian non-institutionalized population to make optimal treatment decisions.


Assuntos
Drogas Ilícitas , Nomogramas , Adulto , Depressão/epidemiologia , Humanos , Inquéritos Nutricionais , Estudos Retrospectivos , Programa de SEER
20.
Genome Biol Evol ; 14(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35137061

RESUMO

The gray wolf (Canis lupus) is among the few large carnivores that survived the Late Pleistocene megafaunal extinctions. Thanks to their complex history of admixture and extensive geographic range, the number of gray wolf subspecies and their phylogenetic relationships remain poorly understood. Here, we perform whole-genome sequencing of a gray wolf collected from peninsular India that was phenotypically distinct from gray wolves outside India. Genomic analyses reveal that the Indian gray wolf is an evolutionarily distinct lineage that diverged from other extant gray wolf lineages ∼110 thousand years ago. Demographic analyses suggest that the Indian wolf population declined continuously decline since separating from other gray wolves and, today, has exceptionally low genetic diversity. We also find evidence for pervasive and mosaic gene flow between the Indian wolf and African canids including African wolf, Ethiopian wolf, and African wild dog despite their current geographical separation. Our results support the hypothesis that the Indian subcontinent was a Pleistocene refugium and center of diversification and further highlight the complex history of gene flow that characterized the evolution of gray wolves.


Assuntos
Lobos , Animais , Fluxo Gênico , Hibridização Genética , Índia , Filogenia , Lobos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA