Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nanomaterials (Basel) ; 14(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39195382

RESUMO

Polar van der Waals (vdW) crystals, composed of atomic layers held together by vdW forces, can host phonon polaritons-quasiparticles arising from the interaction between photons in free-space light and lattice vibrations in polar materials. These crystals offer advantages such as easy fabrication, low Ohmic loss, and optical confinement. Recently, hexagonal boron nitride (hBN), known for having hyperbolicity in the mid-infrared range, has been used to explore multiple modes with high optical confinement. This opens possibilities for practical polaritonic nanodevices with subdiffractional resolution. However, polariton waves still face exposure to the surrounding environment, leading to significant energy losses. In this work, we propose a simple approach to inducing a hyperbolic phonon polariton (HPhP) waveguide in hBN by incorporating a low dielectric medium, ZrS2. The low dielectric medium serves a dual purpose-it acts as a pathway for polariton propagation, while inducing high optical confinement. We establish the criteria for the HPhP waveguide in vdW heterostructures with various thicknesses of ZrS2 through scattering-type scanning near-field optical microscopy (s-SNOM) and by conducting numerical electromagnetic simulations. Our work presents a feasible and straightforward method for developing practical nanophotonic devices with low optical loss and high confinement, with potential applications such as energy transfer, nano-optical integrated circuits, light trapping, etc.

2.
Heliyon ; 10(12): e32871, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022086

RESUMO

A novel scheme for a frequency 32-tupling millimeter wave (MMW) radio over fiber(ROF) system without the bit walk-off effect is proposed. The operation principle and feasibility of our proposed scheme are theoretically analyzed and verified with simulation experiments. The main part of our scheme is a ±16th order sidebands generator (SG) which is constructed by eight Mach-Zehnder modulators (MZM) connected in parallel. In the back-to-back(BTB) transmission case, by properly adjusting the voltage and initial phase of the radio frequency (RF) drive signals of the MZMs, ±16th order sidebands are generated by the SG. In the data transmission case, the data signal is split into two beams first, one of which modulates the RF drive signal with an electrical phase modulator (PM), and the other is amplified by an electrical gainer (EG), and then the two beams are combined into one and used as the RF drive signal of the MZMs. By adjusting the modulation index of the PM and the gain of the EG, the data signal can be modulated only to the +16th order sideband of the output of the SG. The optical carrier from the CW laser is split into two paths, one is sent into the SG, and the other is used as a pilot. The output signal of SG is combined with the pilot signal and is transmitted to the base station(BS) via optical fiber. In BS, the pilot signal is filtered out by an FBG and used as the carrier for uplink for carrier reuse. After filtering out the pilot, the signal from the FBG which is ±16th order sidebands is injected into the photodetector, and a frequency 32-tupling MMW with downlink data is generated. The influence on the bit error rate (BER) and Q factor by the key parameters in the system is also analyzed. Our scheme can not only effectively overcome the bit walk-off effect caused by optical fiber chromatic dispersion, greatly increase the fiber transmission distance, but also effectively improve the performance of the downlink, it has important application prospects in ROF systems.

3.
Biochem Biophys Res Commun ; 718: 150037, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38735135

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for more than 80 % of lung cancer (LC) cases, making it the primary cause of cancer-related mortality worldwide. T-box transcription factor 5 (TBX5) is an important regulator of embryonic and organ development and plays a key role in cancer development. Here, our objective was to investigate the involvement of TBX5 in ferroptosis within LC cells and the underlying mechanisms. METHODS: First, TBX5 expression was examined in human LC cells. Next, overexpression of TBX5 and Yes1-associated transcriptional regulator (YAP1) and knockdown of TEA domain 1 (TEAD1) were performed in A549 and NCI-H1703 cells. The proliferation ability of A549 and NCI-H1703 cells, GSH, MDA, ROS, and Fe2+ levels were measured. Co-immunoprecipitation (Co-IP) was performed to verify whether TBX5 protein could bind YAP1. Then TBX5, YAP1, TEAD1, GPX4, p53, FTH1, SLC7A11 and PTGS2 protein levels were assessed. Finally, we verified the effect of TBX5 on ferroptosis in LC cells in vivo. RESULTS: TBX5 expression was down-regulated in LC cells, especially in A549 and NCI-H1703 cells. Overexpression of TBX5 significantly decreased proliferation ability of A549 and NCI-H1703 cells, downregulated GPX4 and GSH levels, and upregulated MDA, ROS, and Fe2+ levels. Co-IP verified that TBX5 protein could bind YAP1. Moreover, oe-YAP1 promoted proliferation ability of A549 and NCI-H1703 cells transfected with Lv-TBX5, upregulated GPX4 and GSH levels and downregulated MDA, ROS, and Fe2+ levels. Additionally, oe-YAP1 promoted FTH1 and SLC7A11 levels and inhibited p53 and PTGS2 levels in A549 and NCI-H1703 cells transfected with Lv-TBX5. However, transfection with si-TEAD1 further reversed these effects. In vivo experiments further validated that TBX5 promoted ferroptosis in LC cells. CONCLUSIONS: TBX5 inhibited the activation of YAP1-TEAD1 pathway to promote ferroptosis in LC cells.


Assuntos
Ferroptose , Neoplasias Pulmonares , Proteínas com Domínio T , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Proteínas de Sinalização YAP , Ferroptose/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição de Domínio TEA/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Animais , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Camundongos Nus , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos , Regulação Neoplásica da Expressão Gênica , Células A549 , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo
4.
Adv Mater ; 36(21): e2311568, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588584

RESUMO

The electronic and optical properties of 2D transition metal dichalcogenides are dominated by strong excitonic resonances. Exciton dynamics plays a critical role in the functionality and performance of many miniaturized 2D optoelectronic devices; however, the measurement of nanoscale excitonic behaviors remains challenging. Here, a near-field transient nanoscopy is reported to probe exciton dynamics beyond the diffraction limit. Exciton recombination and exciton-exciton annihilation processes in monolayer and bilayer MoS2 are studied as the proof-of-concept demonstration. Moreover, with the capability to access local sites, intriguing exciton dynamics near the monolayer-bilayer interface and at the MoS2 nano-wrinkles are resolved. Such nanoscale resolution highlights the potential of this transient nanoscopy for fundamental investigation of exciton physics and further optimization of functional devices.

5.
Cancer Immunol Immunother ; 73(5): 95, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607586

RESUMO

BACKGROUND: Homologous recombination deficiency (HRD), though largely uncharacterized in clear cell renal cell carcinoma (ccRCC), was found associated with RAD51 loss of expression. PBRM1 is the second most common mutated genes in ccRCC. Here, we introduce a HRD function-based PBRM1-RAD51 ccRCC classification endowed with diverse immune checkpoint blockade (ICB) responses. METHODS: Totally 1542 patients from four independent cohorts were enrolled, including our localized Zhongshan hospital (ZSHS) cohort and Zhongshan hospital metastatic RCC (ZSHS-mRCC) cohort, The Cancer Genome Atlas (TCGA) cohort and CheckMate cohort. The genomic profile and immune microenvironment were depicted by genomic, transcriptome data and immunohistochemistry. RESULTS: We observed that PBRM1-loss ccRCC harbored enriched HRD-associated mutational signature 3 and loss of RAD51. Dual-loss of PBRM1 and RAD51 identified patients hyper-sensitive to immunotherapy. This dual-loss subtype was featured by M1 macrophage infiltration. Dual-loss was, albeit homologous recombination defective, with high chromosomal stability. CONCLUSIONS: PBRM1 and RAD51 dual-loss ccRCC indicates superior responses to immunotherapy. Dual-loss ccRCC harbors an immune-desert microenvironment but enriched with M1 macrophages. Dual-loss ccRCC is susceptible to defective homologous recombination but possesses high chromosomal stability.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Imunoterapia , Neoplasias Renais/genética , Neoplasias Renais/terapia , Instabilidade Cromossômica , Microambiente Tumoral , Rad51 Recombinase , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
6.
J Agric Food Chem ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623691

RESUMO

The plasma membrane (PM) H+-ATPase is crucial for a plant defense system. However, there is currently no consensus on whether the PM H+-ATPase plays a role in alleviating the toxic effects of herbicides on nontarget plants. We found that under the herbicide imazethapyr (IM) exposure, PM H+-ATPase activity in wheat roots increased by approximately 69.53%, leading to rhizosphere acidification. When PM H+-ATPase activity is inhibited, the toxicity of IM significantly increases: When exposed to IM alone, the total Fe content of wheat roots decreased by 29.07%, the relative Fe2+ content increased by 27.75%, and the ROS content increased by 27.74%. When the PM H+-ATPase activity was inhibited, the corresponding data under IM exposure were 37.36%, 215%, and 57.68%, respectively. This work delves into the role of PM H+-ATPase in mediating the detoxification mechanism in plants exposed to herbicides, offering new insights into enhancing crop resistance against herbicides.

7.
J Immunother Cancer ; 12(1)2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262706

RESUMO

BACKGROUND: Immunotherapy is gaining momentum, but current treatments have limitations in terms of beneficiaries. Clear cell renal cell carcinoma (ccRCC) harbors the highest expression of human leukocyte antigen E (HLA-E), ligand of NKG2A, among all solid tumors. In this study, we aim to investigate the role of NKG2A+CD8+ T cells in tumor microenvironment and its potential as a novel target in ccRCC. METHODS: This study included four independent cohorts, including 234 patients from Zhongshan cohort (ZSHC) who underwent partial or radical nephrectomy at Zhongshan Hospital, and 117 metastatic patients from metastatic Zhongshan cohort (ZSHC-metastatic renal cell carcinoma) who were treated with immune checkpoint inhibitor or tyrosine kinase inhibitor alone. We also incorporated a cohort of 530 patients diagnosed with ccRCC from The Cancer Genome Atlas (referred to as TCGA-kidney renal clear cell carcinoma) and 311 patients from CheckMate cohort for bioinformatics exploration and hypothesis validation. Fresh surgical specimens from 15 patients who underwent ccRCC surgery at Zhongshan Hospital were collected for flow cytometry analysis. Another 10 fresh surgical specimens were used to investigate the therapeutic potential of NKG2A blockade after in vitro intervention. The infiltration of NKG2A+CD8+ T cells was assessed using immunohistochemical staining, flow cytometry, and immunofluorescence staining in ZSHC cohort. RESULTS: Patients with higher infiltration of NKG2A+CD8+ T cells in ccRCC exhibited shorter overall survival and resistance to immunotherapy. NKG2A+CD8+ T cells expressed upregulated checkpoint molecules and displayed impaired effector functions, along with tissue-residency characteristics. Combination of programmed cell death protein-1 (PD-1) blockade and NKG2A blockade demonstrated an enhanced capability in reactivating CD8+ T cells effector functions. CONCLUSION: Intense infiltration of NKG2A+CD8+ T cells were associated with poorer prognosis and response to immunotherapy. NKG2A blockade combined with current immunotherapy exhibited a robust ability to reactivate CD8+ T cells effector functions.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Linfócitos T CD8-Positivos , Imunoterapia , Microambiente Tumoral
8.
Nat Commun ; 15(1): 69, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167681

RESUMO

Anisotropic planar polaritons - hybrid electromagnetic modes mediated by phonons, plasmons, or excitons - in biaxial two-dimensional (2D) van der Waals crystals have attracted significant attention due to their fundamental physics and potential nanophotonic applications. In this Perspective, we review the properties of planar hyperbolic polaritons and the variety of methods that can be used to experimentally tune them. We argue that such natural, planar hyperbolic media should be fairly common in biaxial and uniaxial 2D and 1D van der Waals crystals, and identify the untapped opportunities they could enable for functional (i.e. ferromagnetic, ferroelectric, and piezoelectric) polaritons. Lastly, we provide our perspectives on the technological applications of such planar hyperbolic polaritons.

9.
ACS Appl Mater Interfaces ; 15(43): 50047-50057, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856877

RESUMO

Immunomodulation therapies have attracted immense interest recently for the treatment of immune-related diseases, such as cancer and viral infections. This new wave of enthusiasm for immunomodulators, predominantly revolving around cytokines, has spurred emerging needs and opportunities for novel immune monitoring and diagnostic tools. Considering the highly dynamic immune status and limited window for therapeutic intervention, precise real-time detection of cytokines is critical to effectively monitor and manage the immune system and optimize the therapeutic outcome. The clinical success of such a rapid, sensitive, multiplex immunoanalytical platform further requires the system to have ease of integration and fabrication for sample sparing and large-scale production toward massive parallel analysis. In this article, we developed a nanoplasmonic bioink-based, label-free, multiplex immunosensor that can be readily "written" onto a glass substrate via one-step calligraphy patterning. This facile nanolithography technique allows programmable patterning of a minimum of 3 µL of nanoplasmonic bioink in 1 min and thus enables fabrication of a nanoplasmonic microarray immunosensor with 2 h simple incubation. The developed immunosensor was successfully applied for real-time, parallel detection of multiple cytokines (e.g., interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta (TGF-ß)) in immunomodulated macrophage samples. This integrated platform synergistically incorporates the concepts of nanosynthesis, nanofabrication, and nanobiosensing, showing great potential in the scalable production of label-free multiplex immunosensing devices with superior analytical performance for clinical applications in immunodiagnostics and immunotherapy.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos , Monitorização Imunológica , Imunoensaio/métodos , Citocinas/análise
10.
Nat Mater ; 22(7): 805-806, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37349400
11.
Cell Rep ; 42(6): 112557, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37224019

RESUMO

Despite its pivotal roles in biology, how the transcriptional activity of c-MYC is tuned quantitatively remains poorly defined. Here, we show that heat shock factor 1 (HSF1), the master transcriptional regulator of the heat shock response, acts as a prime modifier of the c-MYC-mediated transcription. HSF1 deficiency diminishes c-MYC DNA binding and dampens its transcriptional activity genome wide. Mechanistically, c-MYC, MAX, and HSF1 assemble into a transcription factor complex on genomic DNAs, and surprisingly, the DNA binding of HSF1 is dispensable. Instead, HSF1 physically recruits the histone acetyltransferase general control nonderepressible 5 (GCN5), promoting histone acetylation and augmenting c-MYC transcriptional activity. Thus, we find that HSF1 specifically potentiates the c-MYC-mediated transcription, discrete from its canonical role in countering proteotoxic stress. Importantly, this mechanism of action engenders two distinct c-MYC activation states, primary and advanced, which may be important to accommodate diverse physiological and pathological conditions.


Assuntos
Proteínas de Ligação a DNA , Resposta ao Choque Térmico , Fatores de Transcrição , DNA , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Linhagem Celular Tumoral
12.
Heliyon ; 9(3): e14221, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36915484

RESUMO

An novel method to generate 40-tupling frequency millimeter (MMW) based on the remodulation of MZMs and a novel radio over fiber (ROF) system to transmit the generated MMW are proposed. At the central station (CS), the ±4th order sidebands generated by two Mach-Zehnder modulators (MZMs) in parallel are used as the optical carriers for the remodulation. The radio frequency (RF) signal for the remodulation can be generated by injecting the ±4th order sidebands in the photodetector (PD). The main components in the signal after remodulation are ±4th, ±12th and ±20th order sidebands, among them, the +20th sideband is filtered out by a fiber Bragg grating (FBG). After the +20th order sideband is modulated with the downlink data, the ±20th order sidebands are combined again and transmitted to the base station (BS) by optical fiber. At the BS, a part of -20th order sideband is filtered out with a FBG, and with which the uplink data is modulated on it and sent back to the CS for carrier wave reuse. The 40-tupling frequency MMW signal with downlink data is generated by beating the output signal from FBG in the PD. In the case of data rate is 2.5G/bps and the bit error rate is less than 10-9, the transmission distance can exceed 90 km, the power penalty of the uplink and downlink is less than 1 dB and 0.29 dB, respectively. Our scheme has simple structure, high frequency multiplier factor, it has important application prospects in MMW technology.

13.
Med Image Comput Comput Assist Interv ; 14222: 138-148, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39005889

RESUMO

The modeling of the interaction between brain structure and function using deep learning techniques has yielded remarkable success in identifying potential biomarkers for different clinical phenotypes and brain diseases. However, most existing studies focus on one-way mapping, either projecting brain function to brain structure or inversely. This type of unidirectional mapping approach is limited by the fact that it treats the mapping as a one-way task and neglects the intrinsic unity between these two modalities. Moreover, when dealing with the same biological brain, mapping from structure to function and from function to structure yields dissimilar outcomes, highlighting the likelihood of bias in one-way mapping. To address this issue, we propose a novel bidirectional mapping model, named Bidirectional Mapping with Contrastive Learning (BMCL), to reduce the bias between these two unidirectional mappings via ROI-level contrastive learning. We evaluate our framework on clinical phenotype and neurodegenerative disease predictions using two publicly available datasets (HCP and OASIS). Our results demonstrate the superiority of BMCL compared to several state-of-the-art methods.

14.
ACS Appl Mater Interfaces ; 14(43): 48464-48475, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36281943

RESUMO

Rapid and precise serum cytokine quantification provides immense clinical significance in monitoring the immune status of patients in rapidly evolving infectious/inflammatory disorders, examplified by the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. However, real-time information on predictive cytokine biomarkers to guide targetable immune pathways in pathogenic inflammation is critically lacking, because of the insufficient detection range and detection limit in current label-free cytokine immunoassays. In this work, we report a highly sensitive localized surface plasmon resonance imaging (LSPRi) immunoassay for label-free Interleukin 6 (IL-6) detection utilizing rationally designed peptide aptamers as the capture interface. Benefiting from its characteristically smaller dimension and direct functionalization on the sensing surface via Au-S bonding, the peptide-aptamer-based LSPRi immunoassay achieved enhanced label-free serum IL-6 detection with a record-breaking limit of detection down to 4.6 pg/mL, and a wide dynamic range of ∼6 orders of magnitude (values from 4.6 to 1 × 106 pg/mL were observed). The immunoassay was validated in vitro for label-free analysis of SARS-CoV-2 induced inflammation, and further applied in rapid quantification of serum IL-6 profiles in COVID-19 patients. Our peptide aptamer LSPRi immunoassay demonstrates great potency in label-free cytokine detection with unprecedented sensing capability to provide accurate and timely interpretation of the inflammatory status and disease progression, and determination of prognosis.


Assuntos
Aptâmeros de Peptídeos , Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2 , Citocinas/análise , Interleucina-6 , Imunoensaio/métodos , Inflamação
15.
Cell Rep ; 40(10): 111265, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070689

RESUMO

Germline Argonautes direct transcriptome surveillance within perinuclear membraneless organelles called nuage. In C. elegans, a family of Vasa-related Germ Line Helicase (GLH) proteins localize in and promote the formation of nuage. Previous studies have implicated GLH proteins in inherited silencing, but direct roles in small-RNA production, Argonaute binding, or mRNA targeting have not been identified. Here we show that GLH proteins compete with each other to control Argonaute pathway specificity, bind directly to Argonaute target mRNAs, and promote the amplification of small RNAs required for transgenerational inheritance. We show that the ATPase cycle of GLH-1 regulates direct binding to the Argonaute WAGO-1, which engages amplified small RNAs. Our findings support a dynamic and direct role for GLH proteins in inherited silencing beyond their role as structural components of nuage.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , RNA Helicases DEAD-box/metabolismo , Células Germinativas/metabolismo , RNA Mensageiro/metabolismo
16.
Polymers (Basel) ; 14(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015514

RESUMO

Nano-particles and fibers-modified cementitious composite (NFCC) can greatly overcome the shortcomings of traditional cementitious materials, such as high brittleness and low toughness, and improve the durability of the composite, which in turn increases the service life of the structures. Additionally, the polymer coatings covering the surface of the composite can exert a good physical shielding effect on the external water, ions, and gases, so as to improve the permeability and chloride ion penetration resistance of the composite. In this study, the effect of three types of polymer coatings on the water contact angle, permeability resistance, and chloride ion penetration resistance of the NFCC with varied water-binder ratios were investigated. Three kinds of polymers (chlorinated rubber coating, polyurethane coating, and silane coating) were applied in two types of coatings, including single-layer and double-layer coatings. Three water-binder ratios of 35 wt.%, 40 wt.%, and 45 wt.% were used for the NFCC. The research results revealed that the surface of the NFCC treated with polymer coatings exhibited excellent hydrophobicity. The permeability height and chloride diffusion coefficient of the NFCC coated with different types of polymer coatings were 31-48% and 36-47% lower, respectively, than those of the NFCC without polymer coatings. The durability of the NFCC was further improved when the polymer coatings were applied to the surface in two-layer. Furthermore, it was discovered that increasing the water-binder ratio of the NFCC would lessen the positive impact of polymer coatings on the durability of NFCC.

17.
Appl Opt ; 61(1): 294-301, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35200831

RESUMO

A scheme to generate a frequency 32-tupling millimeter wave (mm-wave) is proposed, enabled by two dual-parallel polarization modulators (DP-PolMs) in cascade. By properly controlling the amplitude and the phase shift of the radio-frequency (RF) driving signal applied to two DP-PolMs, the main optical components at the output of the DP-PolM are ±16th order optical sidebands and the central carrier. After the central carrier is canceled by the polarization multiplexing structure, the ±16th order optical sidebands are beaten in the photodetector; then the frequency 32-tupling mm-wave can be achieved. The optical sideband suppression ratio (OSSR) and the radio-frequency spurious suppression ratio (RFSSR) of the generated signal are 52 and 47 dB in simulation, which are consistent with the theoretical analysis values 53.7 and 47.7 dB. The influence on the OSSR and RFSSR of the generated signal by the key parameters of devices deviating from the theoretical analysis value i are investigated.

18.
ACS Nano ; 15(11): 18023-18036, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34714639

RESUMO

Cytokine storm, known as an exaggerated hyperactive immune response characterized by elevated release of cytokines, has been described as a feature associated with life-threatening complications in COVID-19 patients. A critical evaluation of a cytokine storm and its mechanistic linkage to COVID-19 requires innovative immunoassay technology capable of rapid, sensitive, selective detection of multiple cytokines across a wide dynamic range at high-throughput. In this study, we report a machine-learning-assisted microfluidic nanoplasmonic digital immunoassay to meet the rising demand for cytokine storm monitoring in COVID-19 patients. Specifically, the assay was carried out using a facile one-step sandwich immunoassay format with three notable features: (i) a microfluidic microarray patterning technique for high-throughput, multiantibody-arrayed biosensing chip fabrication; (ii) an ultrasensitive nanoplasmonic digital imaging technology utilizing 100 nm silver nanocubes (AgNCs) for signal transduction; (iii) a rapid and accurate machine-learning-based image processing method for digital signal analysis. The developed immunoassay allows simultaneous detection of six cytokines in a single run with wide working ranges of 1-10,000 pg mL-1 and ultralow detection limits down to 0.46-1.36 pg mL-1 using a minimum of 3 µL serum samples. The whole chip can afford a 6-plex assay of 8 different samples with 6 repeats in each sample for a total of 288 sensing spots in less than 100 min. The image processing method enhanced by convolutional neural network (CNN) dramatically shortens the processing time ∼6,000 fold with a much simpler procedure while maintaining high statistical accuracy compared to the conventional manual counting approach. The immunoassay was validated by the gold-standard enzyme-linked immunosorbent assay (ELISA) and utilized for serum cytokine profiling of COVID-19 positive patients. Our results demonstrate the nanoplasmonic digital immunoassay as a promising practical tool for comprehensive characterization of cytokine storm in patients that holds great promise as an intelligent immunoassay for next generation immune monitoring.


Assuntos
COVID-19 , Microfluídica , Humanos , Síndrome da Liberação de Citocina/diagnóstico , COVID-19/diagnóstico , Imunoensaio/métodos , Citocinas/análise , Aprendizado de Máquina
19.
ACS Sens ; 6(9): 3308-3319, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34494426

RESUMO

Tumor-derived exosomes play a vital role in the process of cancer development. Quantitative analysis of exosomes and exosome-shuttled proteins would be of immense value in understanding cancer progression and generating reliable predictive biomarkers for cancer diagnosis and treatment. Recent studies have indicated the critical role of exosomal programmed death ligand 1 (PD-L1) in immune checkpoint therapy and its application as a patient stratification biomarker in cancer immunotherapy. Here, we present a nanoplasmonic exosome immunoassay utilizing gold-silver (Au@Ag) core-shell nanobipyramids and gold nanorods, which form sandwich immune complexes with target exosomes. The immunoassay generates a distinct plasmonic signal pattern unique to exosomes with specific exosomal PD-L1 expression, allowing rapid, highly sensitive exosome detection and accurate identification of PD-L1 exosome subtypes in a single assay. The developed nanoplasmonic sandwich immunoassay provides a novel and viable approach for tumor cell-derived exosome detection and analysis with quantitative molecular details of key exosomal proteins, manifesting its great potential as a transformative diagnostic tool for early cancer detection, prognosis, and post-treatment monitoring.


Assuntos
Antígeno B7-H1 , Exossomos , Neoplasias/diagnóstico , Detecção Precoce de Câncer , Humanos , Imunoensaio , Nanotecnologia
20.
J Immunother Cancer ; 9(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33589528

RESUMO

BACKGROUND: Chemokine (C-X-C motif) ligand 13 (CXCL13) was known as a selective chemotaxis for B cells, a product of follicular helper CD4+T cells (TFH) and a contributor to tertiary lymphoid structures (TLS). Although secretion and function of CXCL13 produced by TFH have been deeply explored, the immune function and prognostic significance of CXCL13 secreted by CD8+T cells still remain unrevealed. This study aims to investigate the clinical merit of CXCL13+CD8+T cells in clear cell renal cell carcinoma (ccRCC). METHODS: We analyzed prognostic value and immune contexture that associated with CXCL13+CD8+T cells infiltration level in a total of 755 patients from Zhongshan Hospital cohort (n=223) and The Cancer Genome Atlas cohort (n=532). In vitro analyses were conducted on 42 samples of resected tumor tissue from Zhongshan Hospital in order to detect the immune status of CXCL13+CD8+T cells and total CD8+T cells. Immunohistochemistry (IHC) and flow cytometry were applied to characterize immune cells and portray the tumor microenvironment (TME) in ccRCC. RESULTS: Intratumoral CXCL13+CD8+T cells abundance was associated with inferior overall survival and disease-free survival. CXCL13+CD8+T cells possessed higher level of immune checkpoints like programmed cell-death protein 1 (PD-1), T-cell immunoglobulin mucin 3 (Tim-3), T cell immunoreceptor with Ig and ITIM domains (TIGIT) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), higher Ki-67 expression and lower tumor necrosis factor α (TNF-α), interferon γ (IFN-γ) expression. Total CD8+T cells in high-level CXCL13+CD8+T cells infiltration subgroup exhibited elevated exhausted markers (PD-1, Tim-3, TIGIT) and descended activated markers (TNF-α, IFN-γ) without quantity variance. Furthermore, the abundance of intratumoral CXCL13+CD8+T cell was correlated with immunoevasive TME accompanied by increased T helper 2 cells, tumor-associated macrophages, Foxp3+ regulatory T cells, TLS and decreased natural killer cells, GZMB+ cells. CONCLUSIONS: Intratumoral CXCL13+CD8+T cells infiltration indicated inferior clinical outcome in patients with ccRCC. CXCL13+CD8+T cells possessed increased exhausted markers, decreased effector molecules and better proliferation ability. CXCL13+CD8+T cells abundance impaired total CD8+T cells' immune function. Intratumoral CXCL13+CD8+T cells abundance was associated with immunoevasive contexture. The abundance of CXCL13+CD8+T cells was an independent prognosticator and a potential immunotherapeutic target marker for ccRCC treatment.


Assuntos
Biomarcadores Tumorais/análise , Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Renais/imunologia , Quimiocina CXCL13/análise , Neoplasias Renais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Evasão Tumoral , Microambiente Tumoral , Carcinoma de Células Renais/terapia , Humanos , Neoplasias Renais/terapia , Prognóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA