Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 460(Pt 1): 140505, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39033638

RESUMO

The flavor alterations in bighead carp subjected to varying storage temperatures and the underlying metabolic mechanism were elucidated. Analysis of volatile flavor compounds, electronic nose, free amino acids, ATP-related compounds, and sensory evaluations uncovered a progressive flavor deterioration during storage, especially at 25 °C. Metabolomics-based flavor relating component profiling analysis showed that free fatty acids formed various fatty aldehydes including (E, E)-2,4-heptadienal and nonanal under lipoxygenase catalysis. Alcohol dehydrogenase and alcohol acyltransferases were intimately involved in alcohol and ester generation, while alkaline phosphatase, 5'-nucleotidase, and acid phosphatase were closely associated with IMP, Hx, and HxR conversion, respectively. Aeromonas, Serratia, Lactococcus, Pseudomonas, and Peptostreptococcus notably influenced flavor metabolism and enzyme activities. The metabolism disparities of valine, leucine, isoleucine, lysine, and α-linolenic acid could be the primary factors contributing to flavor metabolism distinctions. This study offers novel insights into the flavor change mechanisms and potential regulation strategies of bighead carp during storage.

2.
Food Chem ; 447: 139053, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518616

RESUMO

The influence of four carbon and nitrogen substrates on the quality and flavor of a novel surimi-based product fermented with Actinomucor elegans (A. elegans) was investigated, with a focus on carbon and nitrogen catabolite repression. The results showed that the substrate significantly affected mycelial growth, enzyme activities, and the metabolites of A. elegans. Although glucose significantly promoted A. elegans growth by 116.69%, it decreased enzyme secretion by 69.79% for α-amylase and 59.80% for protease, most likely by triggering the carbon catabolite repression pathway. Starch, soy protein, and wheat gluten substantially affected the textural properties of the fermented surimi. Furthermore, wheat gluten significantly promoted the protease activity (102.70%) and increased protein degradation during surimi fermentation. The fishy odor of surimi was alleviated through fermentation, and a correlation between the volatile compounds and A. elegans metabolism was observed. These results explore fermentation substrates in filamentous fungi metabolism from a catabolite repression perspective.


Assuntos
Carbono , Mucorales , Endopeptidases , Fermentação , Glutens
3.
Food Chem ; 406: 134977, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36470083

RESUMO

The skin discoloration of squid subjected to frozen storage negatively affects market price. In this study, various alkali treatments were investigated for effects on red granules and yellow pigments of squid skin and corresponding mechanisms were investigated at the tissue, cellular and molecular level. A significant colour improvement was observed when subjected to a pH 12 treatment, supported by decreased Δb* and increased Δa* values. Neither lower nor harsher alkali treatments than pH 12 can not obtain such results. HE staining and the UV-vis spectrum suggest that the improved red colour in skin was ascribed to the release of red pigment granules from damaged chromatophores by alkaline treatment and the release of red pigments in alkaline aqueous solutions from granules. However, based on TEM and particle size analysis, an excessive alkali treatment of pH 13 would degrade granules into smaller particles. The degradation of yellowness pigments indicated high sensitivity to alkali environments according to HPLC results. This study provides a valuable reference for improving the colour appearance of squid skin subjected to frozen storage.


Assuntos
Cromatóforos , Decapodiformes , Animais , Cor , Cromatóforos/química , Cromatóforos/metabolismo , Tamanho da Partícula , Concentração de Íons de Hidrogênio
4.
Bioresour Bioprocess ; 10(1): 95, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38647832

RESUMO

A promising way to utilize fish by-products is to develop hydrolysis of fish proteins with enzymes. The obtained fish protein hydrolysates (FPHs) are rich in peptides and amino acids, but bitterness and aroma defects impede further utilization of FPHs. The present study adopted Maillard reaction to improve FPHs' flavor and illustrated the role of cysteine in this system. We investigated the impact of cysteine (0, 0.25%, 0.5%, 0.75%, and 1%) on the browning intensity, free amino acids (FAAs), molecular weight distribution, structure of MRPs, volatile compounds changes and organoleptic characteristics of xylose-glycine-FPHs Maillard reaction systems. Results showed that the addition of cysteine lowered the browning degree of Maillard reaction products (MRPs) by inhibiting the cross-linking of small peptides and reducing the production of melanin. GC-MS and GC-IMS analysis indicated that cysteine inhibited the formation of furans and nitrogen-containing compounds and facilitated the formation of sulfur-containing compounds contributing to the meaty flavor. Sensory analysis revealed that 0.25-0.75% range of cysteine increased the meaty, caramel, umami, mouthfulness and salty notes, and caused a decrease in bitter taste of the MRPs as confirmed by GC-MS. A highly significant correlation between the organoleptic characteristics and physicochemical indicators of MRPs was found by Mantel test. These results elucidated the influence of cysteine on the formation of Maillard reaction products and will help improve the flavor profile of meat flavorings.

5.
Int J Biol Macromol ; 219: 1272-1283, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36058394

RESUMO

The objective of this study was to investigate the potential application of chitosan coatings incorporating epigallocatechin gallate (EGCG) for preserving fillets of bighead carp during chilled storage. The fillets were coated with acetic acid and glycerol, chitosan, and chitosan-EGCG, respectively, and the changes in their physicochemical, microbiological, and sensory characteristics during storage at 4 °C were determined. Notably, total volatile basic nitrogen, thiobarbituric-acid-reactive substances, and K value of chitosan-EGCG coated fillets sampled on day 15 were 48.04 %, 60.19 %, and 32.91 % lower than untreated fillets, respectively. Microbial enumeration suggested that the inclusion of EGCG significantly improved the inhibitory effect of pure chitosan coating on the proliferation of microorganisms. Furthermore, the chitosan-EGCG coated fillets also performed the best in terms of color, texture, and sensory analysis, and extended the shelf-life of the fillets for at least 6 days. A principal component analysis further confirmed the preserving effect of the chitosan-EGCG coating. Mantel test results suggested that the fillets' organoleptic characteristics strongly correlated with physicochemical and microbiological indicators. Overall, this work provides an effective protocol for food quality control and the extension of shelf life during chilled storage, and it clarifies the relationships between organoleptic characteristics and physicochemical and microbiological indexes.


Assuntos
Carpas , Quitosana , Animais , Catequina/análogos & derivados , Quitosana/química , Quitosana/farmacologia , Conservação de Alimentos/métodos , Armazenamento de Alimentos/métodos , Glicerol/análise , Nitrogênio/análise
6.
Int J Biol Macromol ; 211: 729-740, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35523362

RESUMO

Novel chitosan films incorporating epigallocatechin gallate (EGCG) were prepared and demonstrated the ideal physical and mechanical properties required of candidate food packaging materials alongside desirable antioxidant and antibacterial activity. Compared with traditional chitosan films, chitosan films incorporated with EGCG were thicker, had higher tensile strength and water solubility, and had lower elongation at break, moisture content, degree of swelling, and water contact angles. Although EGCG-containing films were slightly darker in color than pure chitosan films, they exhibited a greater inhibitory effect on light-induced oxidation with obviously improved UV-vis barrier capability and opacity. Scanning electron microscopy results suggested that EGCG-incorporated samples had a rougher surface structure. This was further confirmed by atomic force microscopy and indicated that the addition of EGCG facilitated the formation of protective barriers through the interaction between the film and food surface. FTIR spectroscopy confirmed that EGCG interacted with chitosan by intermolecular hydrogen bonding and effectively improved the thermal stability of chitosan films. Notably, the incorporation of EGCG significantly enhanced the antioxidant and antibacterial activity of chitosan films. Hence, chitosan films incorporating EGCG have potential applications in the food industry as a novel active packaging material, especially in preventing food oxidation and spoilage in perishable foods.


Assuntos
Quitosana , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Catequina/análogos & derivados , Quitosana/química , Embalagem de Alimentos/métodos , Água
7.
J Sci Food Agric ; 102(7): 3000-3009, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34773403

RESUMO

BACKGROUND: Freshness is an important quality of squid with respect to determining the market price. The methods of evaluation of freshness fail to be widely used as a result of the lack of rapidity and quantitation. In the present study, a rapid and non-destructive quantification of squid freshness by Fourier transform infrared spectroscopy (FTIR) spectra combined with chemometric techniques was performed. RESULTS: The relatively linear content change of trimethylamine (TMA-N) and dimethylamine (DMA-N) of squid during storage at 4 °C indicated their feasibility as a freshness indicator, as also confirmed by sensory evaluation. The spectral changes were mainly caused by the degradation of proteins and the production of amines by two-dimensional infrared correlation spectroscopy, among which TMA-N, DMA-N and putrescine were the main amines. The successive projections algorithm (SPA) was employed to select the sensitive wavenumbers to freshness for modeling prediction including partial least-squares regression, support vector regression (SVR) and back-propagation artificial neural network. Generally, the SPA-SVR model of the selected characteristic wavenumber showed a higher prediction accuracy for DMA-N (R2 P  = 0.951; RMSEP  = 0.218), whereas both SPA-SVR (R2 P  = 0.929; RMSEP  = 2.602) and Full-SVR (R2 P  = 0.941; RMSEP  = 2.492) models had a higher predictive ability of TMA-N. CONCLUSION: The results of the present study demonstrate that FTIR spectroscopy coupled with multivariate calibration shows significant potential for the prediction of freshness in squid. © 2021 Society of Chemical Industry.


Assuntos
Decapodiformes , Alimentos Marinhos , Algoritmos , Animais , Análise dos Mínimos Quadrados , Alimentos Marinhos/análise , Espectroscopia de Infravermelho com Transformada de Fourier
8.
RSC Adv ; 10(19): 11292-11299, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495306

RESUMO

The binding of key fishy off-flavor compounds (KFOCs), heptanal, octanal, nonanal, and 1-octen-3-ol, to silver carp proteins (total myofibrillar protein, myosin, and actin) was studied. Myosin was the primary binding receptor for all four KFOCs, and it showed the strongest binding at neutral pH and at higher ionic strengths. Thermodynamic models were applied to evaluate the number of binding sites, the binding constant, and the Gibbs free energy for the binding of the KFOCs to myosin. Myosin had approximately 1.0 sites for binding with the three linear-chain aldehydes and about 1.6 sites for binding with 1-octen-3-ol. Moreover, myosin showed the highest affinity for 1-octen-3-ol, and both its binding constant and its number of binding sites with the three linear-chain aldehydes were negatively correlated with the chain length. For all four KFOCs, the trends of the Gibbs free energies were the opposite of those observed for the binding constant and the number of binding sites. These results may provide a theoretical basis for improving the deodorization efficiency of traditional surimi rinsing methods by adjusting the properties of the solutions used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA