Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 11(12): 3929-3938, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36367814

RESUMO

Membrane fusion is essential for the transport of macromolecules and viruses across membranes. While glycan-binding proteins (lectins) often initiate cellular adhesion, subsequent fusion events require additional protein machinery. No mechanism for membrane fusion arising from simply a protein binding to membrane glycolipids has been described thus far. Herein, we report that a biotinylated protein derived from cholera toxin becomes a fusogenic lectin upon cross-linking with streptavidin. This novel reengineered protein brings about hemifusion and fusion of vesicles as demonstrated by mixing of fluorescently labeled lipids between vesicles as well as content mixing of liposomes filled with fluorescently labeled dextran. Exclusion of the complex at vesicle-vesicle interfaces could also be observed, indicating the formation of hemifusion diaphragms. Discovery of this fusogenic lectin complex demonstrates that new emergent properties can arise from simple changes in protein architecture and provides insights into new mechanisms of lipid-driven fusion.


Assuntos
Toxina da Cólera , Fusão de Membrana , Glicolipídeos , Lipossomos/química , Lectinas
2.
Int J Hypertens ; 2022: 1447425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248198

RESUMO

Objective: The aim of this study was to investigate the changes of syndecan-4 (SDC-4) during the hypertensive period in two kidney-two clip (2K2C) hypertension rats and compare them to brain natriuretic peptide (BNP) and the echocardiographic parameters for diastolic function evaluation in the rat model of 2K2C hypertension. Methods: A total of 36 Sprague-Dawley (SD) rats were used in this study. Hypertension was induced in 21 by 2K2C surgery, and 15 were sham-operated. Both the 2K2C hypertension group (n = 21) and the sham-operated group (n = 15) were equally divided into 3 subgroups according to the schedules (week 4, week 8, and week 12). Serum SDC-4 and BNP were detected by ELISA, and echocardiography indexes were acquired. Results: The level of SDC-4 and cardiac fibrosis increased gradually as the experiment was processed, and BNP, Tei index, and E/E' followed to be raised as high blood pressure was maintained after four weeks in the 2K2C hypertension rats. In the earlier 4 weeks, only SDC-4 and cardiac fibrosis were significantly increased in 2K2C hypertensive rats in comparison with normotensive rats. And it was shown that SDC-4 was positively correlated with BNP level during the entire study (r = 0.762, p < 0.01). Conclusion: SDC-4 increases gradually during the process of diastolic dysfunction in 2K2C hypertensive rats. SDC-4 is the earliest biomarker reflecting diastolic dysfunction in this model, superior to E/E' and the Tei index. Our results indicate that serum SDC-4 could act as an early biomarker to show diastolic dysfunction.

3.
Toxins (Basel) ; 14(6)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35737057

RESUMO

Non-toxic derivatives of the cholera toxin are extensively used in neuroscience, as neuronal tracers to reveal the location of cells in the central nervous system. They are, also, being developed as vaccine components and drug-delivery vehicles. Production of cholera-toxin derivatives is often non-reproducible; the quality and quantity require extensive fine-tuning to produce them in lab-scale settings. In our studies, we seek a resolution to this problem, by expanding the molecular toolbox of the Escherichia coli expression system with suitable production, purification, and offline analytics, to critically assess the quality of a probe or drug delivery, based on a non-toxic derivative of the cholera toxin. We present a re-engineered Cholera Toxin Complex (rCTC), wherein its toxic A1 domain was replaced with Maltose Binding Protein (MBP), as a model for an rCTC-based targeted-delivery vehicle. Here, we were able to improve the rCTC production by 11-fold (168 mg/L vs. 15 mg/L), in comparison to a host/vector combination that has been previously used (BL21(DE3) pTRBAB5-G1S). This 11-fold increase in the rCTC production capability was achieved by (1) substantial vector backbone modifications, (2) using Escherichia coli strains capable of growth-decoupling (V strains), (3) implementing a well-tuned fed-batch production protocol at a 1 L scale, and (4) testing the stability of the purified product. By an in-depth characterization of the production process, we revealed that secretion of rCTC across the E. coli Outer Membrane (OM) is processed by the Type II secretion-system general secretory pathway (gsp-operon) and that cholera toxin B-pentamerization is, likely, the rate-limiting step in complex formation. Upon successful manufacturing, we have validated the biological activity of rCTC, by measuring its binding affinity to its carbohydrate receptor GM1 oligosaccharide (Kd = 40 nM), or binding to Jurkat cells (93 pM) and delivering the cargo (MBP) in a retrograde fashion to the cell.


Assuntos
Toxina da Cólera , Toxina da Cólera/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos
4.
Biotechnol Adv ; 59: 107951, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35398203

RESUMO

Glycan-recognizing toxins play a significant role in the etiology of many diseases afflicting humanity. The carbohydrate recognition domains of these toxins play essential roles in the virulence of many microbial organisms with multiple modes of action, from promoting pore formation to facilitating the entry of toxic enzymatic subunits into the host cell. Carbohydrate-binding domains with an affinity for specific glycan-based receptors can also be exploited for various applications, including detecting glycobiomarkers, as drug delivery systems, and new generation biopharmaceutical products and devices (e.g. glycoselective capture of tumor-derived exosomes). Therefore, understanding how to efficiently express and purify recombinant toxins and their carbohydrate-binding domains can enable opportunities for the formulation of innovative biopharmaceuticals that can improve human health. Here, we provide an overview of carbohydrate-binding toxins in the context of biotechnological innovation. We review 1) structural characteristics concerning the toxins' mode of action; 2) applications and therapeutic design with a particular emphasis on exploiting carbohydrate-binding toxins for production of anti-tumor biopharmaceuticals; discuss 3) possible ways to manufacture those molecules at a bioreactor scale using microbial expression systems, and 4) their purification using their affinity for glycans.


Assuntos
Toxinas Bacterianas , Produtos Biológicos , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Carboidratos , Humanos , Polissacarídeos/química
5.
Bioconjug Chem ; 32(10): 2205-2212, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34565149

RESUMO

A significant unmet need exists for the delivery of biologic drugs such as polypeptides or nucleic acids to the central nervous system for the treatment and understanding of neurodegenerative diseases. Naturally occurring bacterial toxins have been considered as tools to meet this need. However, due to the complexity of tethering macromolecular drugs to toxins and the inherent dangers of working with large quantities of recombinant toxins, no such route has been successfully exploited. Developing a method where a bacterial toxin's nontoxic targeting subunit can be assembled with a drug immediately prior to in vivo administration has the potential to circumvent some of these issues. Using a phage-display screen, we identified two antibody mimetics, anticholera toxin Affimer (ACTA)-A2 and ACTA-C6 that noncovalently associate with the nonbinding face of the cholera toxin B-subunit. In a first step toward the development of a nonviral motor neuron drug-delivery vehicle, we show that Affimers can be selectively delivered to motor neurons in vivo.


Assuntos
Toxina da Cólera , Toxinas Bacterianas , Imunoglobulinas , Neurônios Motores , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA