Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 45(5): 1044-1059, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38326625

RESUMO

The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.


Assuntos
Antineoplásicos , Proliferação de Células , Neoplasias Colorretais , Depsipeptídeos , Compostos Macrocíclicos , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Depsipeptídeos/farmacologia , Depsipeptídeos/uso terapêutico , Depsipeptídeos/química , Depsipeptídeos/síntese química , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Ibrain ; 9(2): 133-147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786553

RESUMO

Due to the existence of the blood-brain barrier in glioma, traditional drug therapy has a poor therapeutic outcome. Emerging immunotherapy has been shown to have satisfactory therapeutic effects in solid tumors, and it is clinically instructive to explore the possibility of immunotherapy in glioma. We performed a retrospective analysis of RNA-seq data and clinical information in 1027 glioma patients, utilizing machine learning to explore the relationship between tyrosine metabolizing enzymes and clinical characteristics. In addition, we also assessed the role of tyrosine metabolizing enzymes in the immune microenvironment including immune infiltration and immune evasion. Highly expressed tyrosine metabolizing enzymes 4-hydroxyphenylpyruvate dioxygenase, homogentisate 1,2-dioxygenase, and fumarylacetoacetate hydrolase not only promote the malignant phenotype of glioma but are also closely related to poor prognosis. The expression of tyrosine metabolizing enzymes could distinguish the malignancy degree of glioma. More importantly, tyrosine metabolizing enzymes regulate the adaptive immune process in glioma. Mechanistically, multiple metabolic enzymes remodel fumarate metabolism, promote α-ketoglutarate production, induce programmed death-ligand 1 expression, and help glioma evade immune surveillance. Our data suggest that the metabolic subclass driven by tyrosine metabolism provides promising targets for the immunotherapy of glioma.

3.
BMC Cardiovasc Disord ; 22(1): 362, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941535

RESUMO

BACKGROUND: Systemic immune-inflammation index (SII, platelet × neutrophil/lymphocyte ratio), a new marker of inflammation, is associated with adverse cardiovascular events, but its relationship with coronary slow flow phenomenon (CSFP) is unclear. Therefore, we aimed to investigate the relationship between SII and CSFP. METHODS: We enrolled consecutive patients who presented with chest pain, with normal/near-normal coronary angiography findings (n = 89 as CSFP group; n = 167 as control group). The baseline characteristics, laboratory parameters and angiographic characteristics of the two groups were compared. RESULTS: SII levels were significantly higher in the CSFP group than in the control group (409.7 ± 17.7 vs. 396.7 ± 12.7, p < 0.001). A significant positive correlation between SII and the mean thrombolysis in myocardial infarction frame count (mTFC) was found (r = 0.624, p < 0.001). SII increased with the number of coronary arteries involved in CSFP. In multivariate logistic regression analysis, SII/10 was an independent predictor of CSFP (odds ratio: 1.739, p < 0.001). In addition, the SII level > 404.29 was a predictor of CSFP with 67.4% sensitivity and 71.9% specificity. CONCLUSIONS: SII can predict the occurrence of CSFP.


Assuntos
Infarto do Miocárdio , Fenômeno de não Refluxo , Angiografia Coronária , Vasos Coronários/diagnóstico por imagem , Humanos , Inflamação/diagnóstico , Fenômeno de não Refluxo/diagnóstico por imagem
4.
Theranostics ; 10(24): 11110-11126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042273

RESUMO

Rationale: Many external factors can induce the melanogenesis and inflammation of the skin. Salidroside (SAL) is the main active ingredient of Rhodiola, which is a perennial grass plant of the Family Crassulaceae. This study evaluated the effect and molecular mechanism of SAL on skin inflammation and melanin production. It then explored the molecular mechanism of melanin production under ultraviolet (UV) and inflammatory stimulation. Methods: VISIA skin analysis imaging system and DermaLab instruments were used to detect the melanin reduction and skin brightness improvement rate of the volunteers. UV-treated Kunming mice were used to detect the effect of SAL on skin inflammation and melanin production. Molecular docking and Biacore were used to verify the target of SAL. Immunofluorescence, luciferase reporter assay, CO-IP, pull-down, Western blot, proximity ligation assay (PLA), and qPCR were used to investigate the molecular mechanism by which SAL regulates skin inflammation and melanin production. Results: SAL can inhibit the inflammation and melanin production of the volunteers. SAL also exerted a protective effect on the UV-treated Kunming mice. SAL can inhibit the tyrosinase (TYR) activity and TYR mRNA expression in A375 cells. SAL can also regulate the ubiquitination degradation of interferon regulatory factor 1 (IRF1) by targeting prolyl 4-hydroxylase beta polypeptide (P4HB) to mediate inflammation and melanin production. This study also revealed that IRF1 and upstream stimulatory factor 1 (USF1) can form a transcription complex to regulate TYR mRNA expression. IRF1 also mediated inflammatory reaction and TYR expression under UV- and lipopolysaccharide-induced conditions. Moreover, SAL derivative SAL-plus (1-(3,5-dihydroxyphenyl) ethyl-ß-d-glucoside) showed better effect on inflammation and melanin production than SAL. Conclusion: SAL can inhibit the inflammation and melanogenesis of the skin by targeting P4HB and regulating the formation of the IRF1/USF1 transcription complex. In addition, SAL-plus may be a new melanin production and inflammatory inhibitor.


Assuntos
Glucosídeos/farmacologia , Hiperpigmentação/tratamento farmacológico , Melaninas/metabolismo , Fenóis/farmacologia , Preparações Clareadoras de Pele/farmacologia , Pigmentação da Pele/efeitos dos fármacos , Adulto , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glucosídeos/uso terapêutico , Voluntários Saudáveis , Humanos , Hiperpigmentação/imunologia , Hiperpigmentação/patologia , Fator Regulador 1 de Interferon/metabolismo , Masculino , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Camundongos , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Fenóis/uso terapêutico , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/metabolismo , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/imunologia , Envelhecimento da Pele/efeitos da radiação , Creme para a Pele/farmacologia , Creme para a Pele/uso terapêutico , Preparações Clareadoras de Pele/uso terapêutico , Pigmentação da Pele/efeitos da radiação , Ativação Transcricional/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Fatores Estimuladores Upstream/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA