Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38464011

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by a progressive increase of pulmonary vascular resistance and obliterative pulmonary vascular remodeling that result in right heart hypertrophy, failure, and premature death. The underlying mechanisms of loss of distal capillary endothelial cells (ECs) and obliterative vascular lesion formation remain unclear. Our recent single-cell RNA sequencing, spatial transcriptomics analysis, RNASCOPE, and immunostaining analysis showed that arterial ECs accumulation and loss of capillary ECs were evident in human PAH patients and pulmonary hypertension (PH) rodents. Pseudotime trajectory analysis of the single-cell RNA sequencing data suggest that lung capillary ECs transit to arterial ECs during the development of PH. Our study also identified CXCL12 as the marker for arterial ECs in PH. Capillary EC lineage tracing approach using capillary specific-Dre;Tdtomato reporter mice demonstrated that capillary ECs gave rise to arterial ECs during PH development. Genetic deletion of HIF-2a or pharmacological inhibition of Notch4 normalized the arterial programming in PH. In conclusion, our study demonstrates that capillary endothelium transits to arterial endothelium through the HIF-2a-Notch4 pathway during the development of PAH. Thus, targeting arterial EC transition might be a novel approach for treating PAH patients.

2.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38370670

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating disease characterized by obliterative vascular remodeling and persistent increase of vascular resistance, leading to right heart failure and premature death. Understanding the cellular and molecular mechanisms will help develop novel therapeutic approaches for PAH patients. Single-cell RNA sequencing (scRNAseq) analysis found that both FABP4 and FABP5 were highly induced in endothelial cells (ECs) of Egln1Tie2Cre (CKO) mice, which was also observed in pulmonary arterial ECs (PAECs) from idiopathic PAH (IPAH) patients, and in whole lungs of pulmonary hypertension (PH) rats. Plasma levels of FABP4/5 were upregulated in IPAH patients and directly correlated with severity of hemodynamics and biochemical parameters using plasma proteome analysis. Genetic deletion of both Fabp4 and 5 in CKO mice (Egln1Tie2Cre/Fabp4-5-/- ,TKO) caused a reduction of right ventricular systolic pressure (RVSP) and RV hypertrophy, attenuated pulmonary vascular remodeling and prevented the right heart failure assessed by echocardiography, hemodynamic and histological analysis. Employing bulk RNA-seq and scRNA-seq, and spatial transcriptomic analysis, we showed that Fabp4/5 deletion also inhibited EC glycolysis and distal arterial programming, reduced ROS and HIF-2α expression in PH lungs. Thus, PH causes aberrant expression of FABP4/5 in pulmonary ECs which leads to enhanced ECs glycolysis and distal arterial programming, contributing to the accumulation of arterial ECs and vascular remodeling and exacerbating the disease.

3.
J Mol Cell Biol ; 15(10)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37873692

RESUMO

Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis, is one of the commonest causes of liver dysfunction. Adipose triglyceride lipase (ATGL) is closely related to lipid turnover and hepatic steatosis as the speed-limited triacylglycerol lipase in liver lipolysis. However, the expression and regulation of ATGL in NAFLD remain unclear. Herein, our results showed that ATGL protein levels were decreased in the liver tissues of high-fat diet (HFD)-fed mice, naturally obese mice, and cholangioma/hepatic carcinoma patients with hepatic steatosis, as well as in the oleic acid-induced hepatic steatosis cell model, while ATGL mRNA levels were not changed. ATGL protein was mainly degraded through the proteasome pathway in hepatocytes. Beta-transducin repeat containing (BTRC) was upregulated and negatively correlated with the decreased ATGL level in these hepatic steatosis models. Consequently, BTRC was identified as the E3 ligase for ATGL through predominant ubiquitination at the lysine 135 residue. Moreover, adenovirus-mediated knockdown of BTRC ameliorated steatosis in HFD-fed mouse livers and oleic acid-treated liver cells via upregulating the ATGL level. Taken together, BTRC plays a crucial role in hepatic steatosis as a new ATGL E3 ligase and may serve as a potential therapeutic target for treating NAFLD.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Repetições WD40 , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
5.
Hypertension ; 80(11): 2357-2371, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37737027

RESUMO

BACKGROUND: Rare genetic variants and genetic variation at loci in an enhancer in SOX17 (SRY-box transcription factor 17) are identified in patients with idiopathic pulmonary arterial hypertension (PAH) and PAH with congenital heart disease. However, the exact role of genetic variants or mutations in SOX17 in PAH pathogenesis has not been reported. METHODS: SOX17 expression was evaluated in the lungs and pulmonary endothelial cells (ECs) of patients with idiopathic PAH. Mice with Tie2Cre-mediated Sox17 knockdown and EC-specific Sox17 deletion were generated to determine the role of SOX17 deficiency in the pathogenesis of PAH. Human pulmonary ECs were cultured to understand the role of SOX17 deficiency. Single-cell RNA sequencing, RNA-sequencing analysis, and luciferase assay were performed to understand the underlying molecular mechanisms of SOX17 deficiency-induced PAH. E2F1 (E2F transcription factor 1) inhibitor HLM006474 was used in EC-specific Sox17 mice. RESULTS: SOX17 expression was downregulated in the lung and pulmonary ECs from patients with idiopathic PAH. Mice with Tie2Cre-mediated Sox17 knockdown and EC-specific Sox17 deletion induced spontaneously mild pulmonary hypertension. Loss of endothelial Sox17 in EC exacerbated hypoxia-induced pulmonary hypertension in mice. Loss of SOX17 in lung ECs induced endothelial dysfunctions including upregulation of cell cycle programming, proliferative and antiapoptotic phenotypes, augmentation of paracrine effect on pulmonary arterial smooth muscle cells, impaired cellular junction, and BMP (bone morphogenetic protein) signaling. E2F1 signaling was shown to mediate the SOX17 deficiency-induced EC dysfunction. Pharmacological inhibition of E2F1 in Sox17 EC-deficient mice attenuated pulmonary hypertension development. CONCLUSIONS: Our study demonstrated that endothelial SOX17 deficiency induces pulmonary hypertension through E2F1. Thus, targeting E2F1 signaling represents a promising approach in patients with PAH.


Assuntos
Hipertensão Pulmonar , Humanos , Camundongos , Animais , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Células Endoteliais/metabolismo , Pulmão/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Artéria Pulmonar/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição SOXF/farmacologia , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo
6.
Res Sq ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205391

RESUMO

The role of the lung's microcirculation and capillary endothelial cells in normal physiology and the pathobiology of pulmonary diseases is unequivocally vital. The recent discovery of molecularly distinct aerocytes and general capillary (gCaps) endothelial cells by single-cell transcriptomics (scRNAseq) advanced the field in understanding microcirculatory milieu and cellular communications. However, increasing evidence from different groups indicated the possibility of more heterogenic structures of lung capillaries. Therefore, we investigated enriched lung endothelial cells by scRNAseq and identified five novel populations of gCaps with distinct molecular signatures and roles. Our analysis suggests that two populations of gCaps that express Scn7a(Na+) and Clic4(Cl-) ion transporters form the arterial-to-vein zonation and establish the capillary barrier. We also discovered and named mitotically-active "root" cells (Flot1+) on the interface between arterial, Scn7a+, and Clic4 + endothelium, responsible for the regeneration and repair of the adjacent endothelial populations. Furthermore, the transition of gCaps to a vein requires a venous-capillary endothelium expressing Lingo2. Finally, gCaps detached from the zonation represent a high level of Fabp4, other metabolically active genes, and tip-cell markers showing angiogenesis-regulating capacity. The discovery of these populations will translate into a better understanding of the involvement of capillary phenotypes and their communications in lung disease pathogenesis.

7.
Biomedicines ; 11(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36979916

RESUMO

Transmembrane protein 100 (TMEM100) is a crucial factor in the development and maintenance of the vascular system. The protein is involved in several processes such as angiogenesis, vascular morphogenesis, and integrity. Furthermore, TMEM100 is a downstream target of the BMP9/10 and BMPR2/ALK1 signaling pathways, which are key regulators of vascular development. Our recent studies have shown that TMEM100 is a lung endothelium enriched gene and plays a significant role in lung vascular repair and regeneration. The importance of TMEM100 in endothelial cells' regeneration was demonstrated when Tmem100 was specifically deleted in endothelial cells, causing an impairment in their regenerative ability. However, the role of TMEM100 in various conditions and diseases is still largely unknown, making it an interesting area of research. This review summarizes the current knowledge of TMEM100, including its expression pattern, function, molecular signaling, and clinical implications, which could be valuable in the development of novel therapies for the treatment of cardiovascular and pulmonary diseases.

8.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824855

RESUMO

Rationale: Rare genetic variants and genetic variation at loci in an enhancer in SRY-Box Transcription Factor 17 (SOX17) are identified in patients with idiopathic pulmonary arterial hypertension (PAH) and PAH with congenital heart disease. However, the exact role of genetic variants or mutation in SOX17 in PAH pathogenesis has not been reported. Objectives: To investigate the role of SOX17 deficiency in pulmonary hypertension (PH) development. Methods: Human lung tissue and endothelial cells (ECs) from IPAH patients were used to determine the expression of SOX17. Tie2Cre-mediated and EC-specific deletion of Sox17 mice were assessed for PH development. Single-cell RNA sequencing analysis, human lung ECs, and smooth muscle cell culture were performed to determine the role and mechanisms of SOX17 deficiency. A pharmacological approach was used in Sox17 deficiency mice for therapeutic implication. Measurement and Main Results: SOX17 expression was downregulated in the lungs and pulmonary ECs of IPAH patients. Mice with Tie2Cre mediated Sox17 knockdown and EC-specific Sox17 deletion developed spontaneously mild PH. Loss of endothelial Sox17 in EC exacerbated hypoxia-induced PH in mice. Loss of SOX17 in lung ECs induced endothelial dysfunctions including upregulation of cell cycle programming, proliferative and anti-apoptotic phenotypes, augmentation of paracrine effect on pulmonary arterial smooth muscle cells, impaired cellular junction, and BMP signaling. E2F Transcription Factor 1 (E2F1) signaling was shown to mediate the SOX17 deficiency-induced EC dysfunction and PH development. Conclusions: Our study demonstrated that endothelial SOX17 deficiency induces PH through E2F1 and targeting E2F1 signaling represents a promising approach in PAH patients.

9.
Stem Cells ; 41(4): 328-340, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36640125

RESUMO

Given the increasing popularity of electronic cigarettes (e-cigs), it is imperative to evaluate the potential health risks of e-cigs, especially in users with preexisting health concerns such as pulmonary arterial hypertension (PAH). The aim of the present study was to investigate whether differential susceptibility exists between healthy and patients with PAH to e-cig exposure and the molecular mechanisms contributing to it. Patient-specific induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from healthy individuals and patients with PAH were used to investigate whether e-cig contributes to the pathophysiology of PAH and affects EC homeostasis in PAH. Our results showed that PAH iPSC-ECs showed a greater amount of damage than healthy iPSC-ECs upon e-cig exposure. Transcriptomic analyses revealed that differential expression of Akt3 may be responsible for increased autophagic flux impairment in PAH iPSC-ECs, which underlies increased susceptibility upon e-cig exposure. Moreover, knockdown of Akt3 in healthy iPSC-ECs significantly induced autophagic flux impairment and endothelial dysfunction, which further increased with e-cig treatment, thus mimicking the PAH cell phenotype after e-cig exposure. In addition, functional disruption of mTORC2 by knocking down Rictor in PAH iPSC-ECs caused autophagic flux impairment, which was mediated by downregulation of Akt3. Finally, pharmacological induction of autophagy via direct inhibition of mTORC1 and indirect activation of mTORC2 with rapamycin reverses e-cig-induced decreased Akt3 expression, endothelial dysfunction, autophagic flux impairment, and decreased cell viability, and migration in PAH iPSC-ECs. Taken together, these data suggest a potential link between autophagy and Akt3-mediated increased susceptibility to e-cig in PAH.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Células-Tronco Pluripotentes Induzidas , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/metabolismo , Células Endoteliais/metabolismo , Autofagia , Células-Tronco Pluripotentes Induzidas/fisiologia
10.
Genes (Basel) ; 13(12)2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36553568

RESUMO

The endothelium is a monolayer of cells lining the inner blood vessels. Endothelial cells (ECs) play indispensable roles in angiogenesis, homeostasis, and immune response under normal physiological conditions, and their dysfunction is closely associated with pathologies such as cardiovascular diseases. Abnormal EC metabolism, especially dysfunctional fatty acid (FA) metabolism, contributes to the development of many diseases including pulmonary hypertension (PH). In this review, we focus on discussing the latest advances in FA metabolism in ECs under normal and pathological conditions with an emphasis on PH. We also highlight areas of research that warrant further investigation.


Assuntos
Glicólise , Neovascularização Patológica , Humanos , Neovascularização Patológica/patologia , Células Endoteliais/metabolismo , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo
12.
Eur Respir J ; 60(6)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35798360

RESUMO

BACKGROUND: Nitrative stress is a characteristic feature of the pathology of human pulmonary arterial hypertension. However, the role of nitrative stress in the pathogenesis of obliterative vascular remodelling and severe pulmonary arterial hypertension remains largely unclear. METHOD: Our recently identified novel mouse model (Egln1Tie2Cre, Egln1 encoding prolyl hydroxylase 2 (PHD2)) has obliterative vascular remodelling and right heart failure, making it an excellent model to use in this study to examine the role of nitrative stress in obliterative vascular remodelling. RESULTS: Nitrative stress was markedly elevated whereas endothelial caveolin-1 (Cav1) expression was suppressed in the lungs of Egln1Tie2Cre mice. Treatment with a superoxide dismutase mimetic, manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride or endothelial Nos3 knockdown using endothelial cell-targeted nanoparticle delivery of CRISPR-Cas9/guide RNA plasmid DNA inhibited obliterative pulmonary vascular remodelling and attenuated severe pulmonary hypertension in Egln1Tie2Cre mice. Genetic restoration of Cav1 expression in Egln1Tie2Cre mice normalised nitrative stress, reduced pulmonary hypertension and improved right heart function. CONCLUSION: These data suggest that suppression of Cav1 expression secondary to PHD2 deficiency augments nitrative stress through endothelial nitric oxide synthase activation, which contributes to obliterative vascular remodelling and severe pulmonary hypertension. Thus, a reactive oxygen/nitrogen species scavenger might have therapeutic potential for the inhibition of obliterative vascular remodelling and severe pulmonary arterial hypertension.


Assuntos
Caveolina 1 , Prolina Dioxigenases do Fator Induzível por Hipóxia , Estresse Nitrosativo , Hipertensão Arterial Pulmonar , Remodelação Vascular , Animais , Humanos , Camundongos , Caveolina 1/genética , Caveolina 1/metabolismo , Pulmão/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Remodelação Vascular/genética , Estresse Nitrosativo/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Modelos Animais de Doenças
13.
Cells ; 11(9)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563731

RESUMO

There are currently no effective treatments for sepsis and acute respiratory distress syndrome (ARDS). The repositioning of existing drugs is one possible effective strategy for the treatment of sepsis and ARDS. We previously showed that vascular repair and the resolution of sepsis-induced inflammatory lung injury is dependent upon endothelial HIF-1α/FoxM1 signaling. The aim of this study was to identify a candidate inducer of HIF-1α/FoxM1 signaling for the treatment of sepsis and ARDS. Employing high throughput screening of a library of 1200 FDA-approved drugs by using hypoxia response element (HRE)-driven luciferase reporter assays, we identified Rabeprazole (also known as Aciphex) as a top HIF-α activator. In cultured human lung microvascular endothelial cells, Rabeprazole induced HIF1A mRNA expression in a dose-dependent manner. A dose-response study of Rabeprazole in a mouse model of endotoxemia-induced inflammatory lung injury identified a dose that was well tolerated and enhanced vascular repair and the resolution of inflammatory lung injury. Rabeprazole treatment resulted in reductions in lung vascular leakage, edema, and neutrophil sequestration and proinflammatory cytokine expression during the repair phrase. We next used Hif1a/Tie2Cre knockout mice and Foxm1/Tie2Cre knockout mice to show that Rabeprazole promoted vascular repair through HIF-1α/FoxM1 signaling. In conclusion, Rabeprazole is a potent inducer of HIF-1α that promotes vascular repair and the resolution of sepsis-induced inflammatory lung injury via endothelial HIF-1α/FoxM1 signaling. This drug therefore represents a promising candidate for repurposing to effectively treat severe sepsis and ARDS.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Sepse , Animais , Células Endoteliais/metabolismo , Lesão Pulmonar/metabolismo , Camundongos , Rabeprazol/metabolismo , Rabeprazol/farmacologia , Rabeprazol/uso terapêutico , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/genética
14.
Pulm Circ ; 12(1): e12056, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35506101

RESUMO

BMP signaling deficiency is evident in the lungs of patients with pulmonary arterial hypertension. We demonstrated that PHD2 deficiency suppresses BMP signaling in the lung endothelial cells, suggesting the novel mechanisms of dysregulated BMP signaling in the development of pulmonary arterial hypertension.

15.
J Am Heart Assoc ; 10(22): e022077, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34743552

RESUMO

Background Cardiac hypertrophy and fibrosis are common adaptive responses to injury and stress, eventually leading to heart failure. Hypoxia signaling is important to the (patho)physiological process of cardiac remodeling. However, the role of endothelial PHD2 (prolyl-4 hydroxylase 2)/hypoxia inducible factor (HIF) signaling in the pathogenesis of cardiac hypertrophy and heart failure remains elusive. Methods and Results Mice with Egln1Tie2Cre (Tie2-Cre-mediated deletion of Egln1 [encoding PHD2]) exhibited left ventricular hypertrophy evident by increased thickness of anterior and posterior wall and left ventricular mass, as well as cardiac fibrosis. Tamoxifen-induced endothelial Egln1 deletion in adult mice also induced left ventricular hypertrophy and fibrosis. Additionally, we observed a marked decrease of PHD2 expression in heart tissues and cardiovascular endothelial cells from patients with cardiomyopathy. Moreover, genetic ablation of Hif2a but not Hif1a in Egln1Tie2Cre mice normalized cardiac size and function. RNA sequencing analysis also demonstrated HIF-2α as a critical mediator of signaling related to cardiac hypertrophy and fibrosis. Pharmacological inhibition of HIF-2α attenuated cardiac hypertrophy and fibrosis in Egln1Tie2Cre mice. Conclusions The present study defines for the first time an unexpected role of endothelial PHD2 deficiency in inducing cardiac hypertrophy and fibrosis in an HIF-2α-dependent manner. PHD2 was markedly decreased in cardiovascular endothelial cells in patients with cardiomyopathy. Thus, targeting PHD2/HIF-2α signaling may represent a novel therapeutic approach for the treatment of pathological cardiac hypertrophy and failure.


Assuntos
Fibrose , Hipertrofia Ventricular Esquerda , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Células Endoteliais/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Hipertrofia Ventricular Esquerda/patologia , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Camundongos , Prolil Hidroxilases
16.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804745

RESUMO

Endothelial autocrine signaling is essential to maintain vascular homeostasis. There is limited information about the role of endothelial autocrine signaling in regulating severe pulmonary vascular remodeling during the onset of pulmonary arterial hypertension (PAH). In this study, we employed the first severe pulmonary hypertension (PH) mouse model, Egln1Tie2Cre (Tie2Cre-mediated disruption of Egln1) mice, to identify the novel autocrine signaling mediating the pulmonary vascular endothelial cell (PVEC) proliferation and the pathogenesis of PAH. PVECs isolated from Egln1Tie2Cre lung expressed upregulation of many growth factors or angiocrine factors such as CXCL12, and exhibited pro-proliferative phenotype coincident with the upregulation of proliferation-specific transcriptional factor FoxM1. Treatment of CXCL12 on PVECs increased FoxM1 expression, which was blocked by CXCL12 receptor CXCR4 antagonist AMD3100 in cultured human PVECs. The endothelial specific deletion of Cxcl12(Egln1/Cxcl12Tie2Cre) or AMD3100 treatment in Egln1Tie2Cre mice downregulated FoxM1 expression in vivo. We then generated and characterized a novel mouse model with endothelial specific FoxM1 deletion in Egln1Tie2Cre mice (Egln1/Foxm1Tie2Cre), and found that endothelial FoxM1 deletion reduced pulmonary vascular remodeling and right ventricular systolic pressure. Together, our study identified a novel mechanism of endothelial autocrine signaling in regulating PVEC proliferation and pulmonary vascular remodeling in PAH.


Assuntos
Comunicação Autócrina , Quimiocina CXCL12/metabolismo , Células Endoteliais/metabolismo , Proteína Forkhead Box M1/metabolismo , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Imunofluorescência , Humanos , Hipóxia/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Hipertensão Arterial Pulmonar/diagnóstico , Índice de Gravidade de Doença , Remodelação Vascular
17.
Eur Respir J ; 58(3)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33509961

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating disease that involves pulmonary vasoconstriction, small vessel obliteration, large vessel thickening and obstruction, and development of plexiform lesions. PAH vasculopathy leads to progressive increases in pulmonary vascular resistance, right heart failure and, ultimately, premature death. Besides other cell types that are known to be involved in PAH pathogenesis (e.g. smooth muscle cells, fibroblasts and leukocytes), recent studies have demonstrated that endothelial cells (ECs) have a crucial role in the initiation and progression of PAH. The EC-specific role in PAH is multi-faceted and affects numerous pathophysiological processes, including vasoconstriction, inflammation, coagulation, metabolism and oxidative/nitrative stress, as well as cell viability, growth and differentiation. In this review, we describe how EC dysfunction and cell signalling regulate the pathogenesis of PAH. We also highlight areas of research that warrant attention in future studies, and discuss potential molecular signalling pathways in ECs that could be targeted therapeutically in the prevention and treatment of PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Células Endoteliais , Hipertensão Pulmonar Primária Familiar , Humanos , Miócitos de Músculo Liso , Artéria Pulmonar
18.
Biochem Biophys Res Commun ; 529(3): 726-732, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736699

RESUMO

Integrin ß4 (CD104, mRNA: ITGß4) contributes to anchoring cells to the extracellular matrix and is regulated in many cancer types where it contributes to tumor progression. One splice variant, integrin ß4E, is poorly characterized. We extracted several mutations from tumor samples within ITGB4 near the splice site that controls ITGß4E production, and computational analysis predicted six of these would alter splicing to alter ITGß4E abundance. One of these mutations, from an esophageal squamous cell carcinoma sample, was predicted to increase splicing toward ITGß4E. We verified this effect using a minigene, and observed that integrin ß4E slows esophageal squamous cell migration while other variants enhance migration, demonstrating that integrin ß4E regulation through mutations may contribute to esophageal squamous cell tumorigenesis.


Assuntos
Neoplasias Esofágicas/genética , Integrina beta4/genética , Splicing de RNA , RNA Mensageiro/genética , Linhagem Celular Tumoral , Humanos , Mutação , Sítios de Splice de RNA
20.
Cell Death Dis ; 9(8): 784, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013023

RESUMO

The PDF and HTML versions of the article have been updated to include the Creative Commons Attribution 4.0 International License information.Correction to: Cell Death Dis. 5, e1484 (2014); https://doi.org/10.1038/cddis.2014.408 ; published online 23 October 2014.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA