Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e26429, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434061

RESUMO

The presence of missing data is a significant data quality issue that negatively impacts the accuracy and reliability of data analysis. This issue is especially relevant in the context of accelerated tests, particularly for step-stress accelerated degradation tests. While missing data can occur due to objective factors or human error, high missing rate is an inevitable pattern of missing data that will occur during the conversion process of accelerated test data. This type of missing data manifests as a degradation dataset with unequal measuring intervals. Therefore, developing a more appropriate imputation method for accelerated test data is essential. In this study, we propose a novel hybrid imputation method that combines the LSSVM and RBF models to address missing data problems. A comparison is conducted between the proposed model and various traditional and machine learning imputation methods using simulation data, to justify the advantages of the proposed model over the existing methods. Finally, the proposed model is implemented on real degradation datasets of the super-luminescent diode (SLD) to validate its performance and effectiveness in dealing with missing data in step-stress accelerated degradation test. Additionally, due to the generalizability of the proposed method, it is expected to be applicable in other scenarios with high missing data rates.

2.
Opt Express ; 31(18): 29061-29073, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710713

RESUMO

In the field of diamond MESFETs, this work is what we believe to be the first to investigate the optoelectronic properties of hydrogen-terminated polycrystalline diamond MESFETs under visible and near-UV light irradiation. It is shown that the diamond MESFETs are well suited for weak light detection in the near-ultraviolet region around the wavelength of 368 nm, with a responsivity of 6.14 × 106 A/W and an external quantum efficiency of 2.1 × 107 when the incident light power at 368.7 nm is only 0.75 µW/cm2. For incident light at 275.1 nm, the device's sensitivity and EQE increase as the incident light power increases; at an incident light power of 175.32 µW/cm2 and a VGS of -1 V, the device's sensitivity is 2.9 × 105 A/W and the EQE is 1.3 × 106. For incident light in the wavelength range of 660 nm to 404 nm with an optical power of 70 µW/cm2, the device achieves an average responsivity of 1.21 × 105 A/W. This indicates that hydrogen-terminated polycrystalline diamond MESFETs are suitable for visible and near-UV light detection, especially for weak near-UV light detection. However, the transient response test of the device shows a long relaxation time of about 0.2 s, so it is not yet suitable for high-speed UV communication or detection.

3.
Materials (Basel) ; 15(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35057127

RESUMO

Lead-free and eco-friendly GeTe shows promising mid-temperature thermoelectric applications. However, a low Seebeck coefficient due to its intrinsically high hole concentration induced by Ge vacancies, and a relatively high thermal conductivity result in inferior thermoelectric performance in pristine GeTe. Extrinsic dopants such as Sb, Bi, and Y could play a crucial role in regulating the hole concentration of GeTe because of their different valence states as cations and high solubility in GeTe. Here we investigate the thermoelectric performance of GeTe upon Sb doping, and demonstrate a high maximum zT value up to 1.88 in Ge0.90Sb0.10Te as a result of the significant suppression in thermal conductivity while maintaining a high power factor. The maintained high power factor is due to the markable enhancement in the Seebeck coefficient, which could be attributed to the significant suppression of hole concentration and the valence band convergence upon Sb doping, while the low thermal conductivity stems from the suppression of electronic thermal conductivity due to the increase in electrical resistivity and the lowering of lattice thermal conductivity through strengthening the phonon scattering by lattice distortion, dislocations, and twin boundaries. The excellent thermoelectric performance of Ge0.90Sb0.10Te shows good reproducibility and thermal stability. This work confirms that Ge0.90Sb0.10Te is a superior thermoelectric material for practical application.

4.
Phys Chem Chem Phys ; 19(16): 10350-10357, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28379222

RESUMO

Orientation-dependent reactivity and band-bending are evidenced upon Ti deposition (1-10 Å) on polar ZnO(0001)-Zn and ZnO(0001[combining macron])-O surfaces. At the onset of the Ti deposition, a downward band-bending was observed on ZnO(0001[combining macron])-O while no change occurred on ZnO(0001)-Zn. Combining this with the photoemission analysis of the Ti 2p core level and Zn L3(L2)M45M45 Auger transition, it is established that the Ti/ZnO reaction is of the form Ti + 2ZnO → TiO2 + 2Zn on ZnO(0001)-Zn and Ti + yZnO → TiZnxOy + (y - x)Zn on ZnO(0001[combining macron])-O. Consistently, upon annealing thicker Ti adlayers, the metallic zinc is removed to leave ZnO(0001)-Zn surfaces covered with a TiO2-like phase and ZnO(0001[combining macron])-O surfaces covered with a defined (Ti, Zn, O) compound. Finally, a difference in the activation temperature between the O-terminated (500 K) and Zn-terminated (700 K) surfaces is observed, which is tentatively explained by different electric fields in the space charge layer at ZnO surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA