Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JMIR Med Inform ; 11: e42477, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100200

RESUMO

BACKGROUND: In recent years, health data collected during the clinical care process have been often repurposed for secondary use through clinical data warehouses (CDWs), which interconnect disparate data from different sources. A large amount of information of high clinical value is stored in unstructured text format. Natural language processing (NLP), which implements algorithms that can operate on massive unstructured textual data, has the potential to structure the data and make clinical information more accessible. OBJECTIVE: The aim of this review was to provide an overview of studies applying NLP to textual data from CDWs. It focuses on identifying the (1) NLP tasks applied to data from CDWs and (2) NLP methods used to tackle these tasks. METHODS: This review was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We searched for relevant articles in 3 bibliographic databases: PubMed, Google Scholar, and ACL Anthology. We reviewed the titles and abstracts and included articles according to the following inclusion criteria: (1) focus on NLP applied to textual data from CDWs, (2) articles published between 1995 and 2021, and (3) written in English. RESULTS: We identified 1353 articles, of which 194 (14.34%) met the inclusion criteria. Among all identified NLP tasks in the included papers, information extraction from clinical text (112/194, 57.7%) and the identification of patients (51/194, 26.3%) were the most frequent tasks. To address the various tasks, symbolic methods were the most common NLP methods (124/232, 53.4%), showing that some tasks can be partially achieved with classical NLP techniques, such as regular expressions or pattern matching that exploit specialized lexica, such as drug lists and terminologies. Machine learning (70/232, 30.2%) and deep learning (38/232, 16.4%) have been increasingly used in recent years, including the most recent approaches based on transformers. NLP methods were mostly applied to English language data (153/194, 78.9%). CONCLUSIONS: CDWs are central to the secondary use of clinical texts for research purposes. Although the use of NLP on data from CDWs is growing, there remain challenges in this field, especially with regard to languages other than English. Clinical NLP is an effective strategy for accessing, extracting, and transforming data from CDWs. Information retrieved with NLP can assist in clinical research and have an impact on clinical practice.

2.
JMIR Med Inform ; 10(11): e36711, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318244

RESUMO

BACKGROUND: Often missing from or uncertain in a biomedical data warehouse (BDW), vital status after discharge is central to the value of a BDW in medical research. The French National Mortality Database (FNMD) offers open-source nominative records of every death. Matching large-scale BDWs records with the FNMD combines multiple challenges: absence of unique common identifiers between the 2 databases, names changing over life, clerical errors, and the exponential growth of the number of comparisons to compute. OBJECTIVE: We aimed to develop a new algorithm for matching BDW records to the FNMD and evaluated its performance. METHODS: We developed a deterministic algorithm based on advanced data cleaning and knowledge of the naming system and the Damerau-Levenshtein distance (DLD). The algorithm's performance was independently assessed using BDW data of 3 university hospitals: Lille, Nantes, and Rennes. Specificity was evaluated with living patients on January 1, 2016 (ie, patients with at least 1 hospital encounter before and after this date). Sensitivity was evaluated with patients recorded as deceased between January 1, 2001, and December 31, 2020. The DLD-based algorithm was compared to a direct matching algorithm with minimal data cleaning as a reference. RESULTS: All centers combined, sensitivity was 11% higher for the DLD-based algorithm (93.3%, 95% CI 92.8-93.9) than for the direct algorithm (82.7%, 95% CI 81.8-83.6; P<.001). Sensitivity was superior for men at 2 centers (Nantes: 87%, 95% CI 85.1-89 vs 83.6%, 95% CI 81.4-85.8; P=.006; Rennes: 98.6%, 95% CI 98.1-99.2 vs 96%, 95% CI 94.9-97.1; P<.001) and for patients born in France at all centers (Nantes: 85.8%, 95% CI 84.3-87.3 vs 74.9%, 95% CI 72.8-77.0; P<.001). The DLD-based algorithm revealed significant differences in sensitivity among centers (Nantes, 85.3% vs Lille and Rennes, 97.3%, P<.001). Specificity was >98% in all subgroups. Our algorithm matched tens of millions of death records from BDWs, with parallel computing capabilities and low RAM requirements. We used the Inseehop open-source R script for this measurement. CONCLUSIONS: Overall, sensitivity/recall was 11% higher using the DLD-based algorithm than that using the direct algorithm. This shows the importance of advanced data cleaning and knowledge of a naming system through DLD use. Statistically significant differences in sensitivity between groups could be found and must be considered when performing an analysis to avoid differential biases. Our algorithm, originally conceived for linking a BDW with the FNMD, can be used to match any large-scale databases. While matching operations using names are considered sensitive computational operations, the Inseehop package released here is easy to run on premises, thereby facilitating compliance with cybersecurity local framework. The use of an advanced deterministic matching algorithm such as the DLD-based algorithm is an insightful example of combining open-source external data to improve the usage value of BDWs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA