Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 624(7991): 309-316, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092909

RESUMO

Analysis of climate policy scenarios has become an important tool for identifying mitigation strategies, as shown in the latest Intergovernmental Panel on Climate Change Working Group III report1. The key outcomes of these scenarios differ substantially not only because of model and climate target differences but also because of different assumptions on behavioural, technological and socio-economic developments2-4. A comprehensive attribution of the spread in climate policy scenarios helps policymakers, stakeholders and scientists to cope with large uncertainties in this field. Here we attribute this spread to the underlying drivers using Sobol decomposition5, yielding the importance of each driver for scenario outcomes. As expected, the climate target explains most of the spread in greenhouse gas emissions, total and sectoral fossil fuel use, total renewable energy and total carbon capture and storage in electricity generation. Unexpectedly, model differences drive variation of most other scenario outcomes, for example, in individual renewable and carbon capture and storage technologies, and energy in demand sectors, reflecting intrinsic uncertainties about long-term developments and the range of possible mitigation strategies. Only a few scenario outcomes, such as hydrogen use, are driven by other scenario assumptions, reflecting the need for more scenario differentiation. This attribution analysis distinguishes areas of consensus as well as strong model dependency, providing a crucial step in correctly interpreting scenario results for robust decision-making.

2.
Environ Sci Technol ; 57(6): 2464-2473, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36724208

RESUMO

Carbon-neutral hydrogen (H2) can reduce emissions from hard-to-electrify sectors and contribute to a net-zero greenhouse gas economy by 2050. Power-to-hydrogen (PtH2) technologies based on clean electricity can provide such H2, yet their carbon intensities alone do not provide sufficient basis to judge their potential contribution to a sustainable and just energy transition. Introducing a prospective life cycle assessment framework to decipher the non-linear relationships between future technology and energy system dynamics over time, we showcase its relevance to inform research, development, demonstration, and deployment by comparing two PtH2 technologies to steam methane reforming (SMR) across a series of environmental and resource-use metrics. We find that the system transitions in the power, cement, steel, and fuel sectors move impacts for both PtH2 technologies to equal or lower levels by 2100 compared to 2020 per kg of H2 except for metal depletion. The decarbonization of the United States power sector by 2035 allows PtH2 to reach parity with SMR at 10 kg of CO2e/kg H2 between 2030 and 2050. Updated H2 radiative forcing and leakage levels only marginally affect these results. Biomass carbon removal and storage power technologies enable carbon-negative H2 after 2040 at about -15 kg of CO2e/kg H2. Still, both PtH2 processes exhibit higher impacts across most other metrics, some of which are worsened by the decarbonization of the power sector. Observed increases in metal depletion and eco- and human toxicity levels can be reduced via PtH2 energy and material use efficiency improvements, but the power sector decarbonization routes also warrant further review and cradle-to-grave assessments to show tradeoffs from a systems perspective.


Assuntos
Gases de Efeito Estufa , Hidrogênio , Humanos , Estados Unidos , Animais , Metano , Vapor , Tecnologia , Carbono , Estágios do Ciclo de Vida
3.
Nature ; 612(7939): 272-276, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477132

RESUMO

Plastics show the strongest production growth of all bulk materials and are already responsible for 4.5% of global greenhouse gas emissions1,2. If no new policies are implemented, we project a doubling of global plastic demand by 2050 and more than a tripling by 2100, with an almost equivalent increase in CO2 emissions. Here we analyse three alternative CO2 emission-mitigation pathways for the global plastics sector until 2100, covering the entire life cycle from production to waste management. Our results show that, through bio-based carbon sequestration in plastic products, a combination of biomass use and landfilling can achieve negative emissions in the long term; however, this involves continued reliance on primary feedstock. A circular economy approach without an additional bioeconomy push reduces resource consumption by 30% and achieves 10% greater emission reductions before 2050 while reducing the potential of negative emissions in the long term. A circular bioeconomy approach combining recycling with higher biomass use could ultimately turn the sector into a net carbon sink, while at the same time phasing out landfilling and reducing resource consumption. Our work improves the representation of material flows and the circular economy in global energy and emission models, and provides insight into long-term dynamics in the plastics sector.


Assuntos
Dióxido de Carbono , Plásticos , Políticas
4.
Glob Change Biol Bioenergy ; 14(3): 307-321, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35875590

RESUMO

Bioenergy with carbon capture and storage (BECCS) based on purpose-grown lignocellulosic crops can provide negative CO2 emissions to mitigate climate change, but its land requirements present a threat to biodiversity. Here, we analyse the implications of crop-based BECCS for global terrestrial vertebrate species richness, considering both the land-use change (LUC) required for BECCS and the climate change prevented by BECCS. LUC impacts are determined using global-equivalent, species-area relationship-based loss factors. We find that sequestering 0.5-5 Gtonne of CO2 per year with lignocellulosic crop-based BECCS would require hundreds of Mha of land, and commit tens of terrestrial vertebrate species to extinction. Species loss per unit of negative emissions decreases with: (i) longer lifetimes of BECCS systems, (ii) less overall deployment of crop-based BECCS and (iii) optimal land allocation, that is prioritizing locations with the lowest species loss per negative emission potential, rather than minimizing overall land use or prioritizing locations with the lowest biodiversity. The consequences of prevented climate change for biodiversity are based on existing climate response relationships. Our tentative comparison shows that for crop-based BECCS considered over 30 years, LUC impacts on vertebrate species richness may outweigh the positive effects of prevented climate change. Conversely, for BECCS considered over 80 years, the positive effects of climate change mitigation on biodiversity may outweigh the negative effects of LUC. However, both effects and their interaction are highly uncertain and require further understanding, along with the analysis of additional species groups and biodiversity metrics. We conclude that factoring in biodiversity means lignocellulosic crop-based BECCS should be used early to achieve the required mitigation over longer time periods, on optimal biomass cultivation locations, and most importantly, as little as possible where conversion of natural land is involved, looking instead to sustainably grown or residual biomass-based feedstocks and alternative strategies for carbon dioxide removal.

5.
Nat Commun ; 13(1): 3635, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752628

RESUMO

Direct air capture (DAC) is critical for achieving stringent climate targets, yet the environmental implications of its large-scale deployment have not been evaluated in this context. Performing a prospective life cycle assessment for two promising technologies in a series of climate change mitigation scenarios, we find that electricity sector decarbonization and DAC technology improvements are both indispensable to avoid environmental problem-shifting. Decarbonizing the electricity sector improves the sequestration efficiency, but also increases the terrestrial ecotoxicity and metal depletion levels per tonne of CO2 sequestered via DAC. These increases can be reduced by improvements in DAC material and energy use efficiencies. DAC exhibits regional environmental impact variations, highlighting the importance of smart siting related to energy system planning and integration. DAC deployment aids the achievement of long-term climate targets, its environmental and climate performance however depend on sectoral mitigation actions, and thus should not suggest a relaxation of sectoral decarbonization targets.


Assuntos
Mudança Climática , Eletricidade , Meio Ambiente , Estudos Prospectivos , Tecnologia
6.
MethodsX ; 9: 101666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369121

RESUMO

Integrated assessment models (IAM) study the interlinkages between human and natural systems and play a key role in assessing global strategies to reduce global warming. However, they largely neglect the role of materials and the circular economy. With the Plastics Integrated Assessment model (PLAIA), we included plastic production, use, and end-of-life in the IAM IMAGE. PLAIA models the global plastics sector and its impacts up to 2100 for 26 world regions, providing a long-term, dynamic perspective of the sector and its interactions with other socioeconomic and natural systems. This article summarizes the model structure, mathematical formulation, assumptions, and data sources. The model links the upstream chemical production with the downstream production of plastics, their use in different sectors, and their end of life. Therefore, PLAIA can assess material use and emission mitigation strategies throughout the whole life cycle in an IAM, including the impacts of the circular economy on mitigating climate change. PLAIA projects plastics demand, production pathways and specifies the annual plastic waste generation, collection, and the impact of waste management strategies. It shows the fossil and bio-based energy and carbon flows in product stocks, landfills, and the emissions in production and at the end of life.•We included plastics production, use, and waste management into an Integrated Assessment Model (IAM).•Our model PLAIA provides a long-term, dynamic perspective of the global plastics sector until 2100 and its interactions with other sectors and the environment.•PLAIA can assess the impact of material use and emission mitigation strategies throughout the whole life cycle of plastics.

7.
Glob Chang Biol ; 27(23): 6025-6058, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636101

RESUMO

Land-based climate mitigation measures have gained significant attention and importance in public and private sector climate policies. Building on previous studies, we refine and update the mitigation potentials for 20 land-based measures in >200 countries and five regions, comparing "bottom-up" sectoral estimates with integrated assessment models (IAMs). We also assess implementation feasibility at the country level. Cost-effective (available up to $100/tCO2 eq) land-based mitigation is 8-13.8 GtCO2 eq yr-1 between 2020 and 2050, with the bottom end of this range representing the IAM median and the upper end representing the sectoral estimate. The cost-effective sectoral estimate is about 40% of available technical potential and is in line with achieving a 1.5°C pathway in 2050. Compared to technical potentials, cost-effective estimates represent a more realistic and actionable target for policy. The cost-effective potential is approximately 50% from forests and other ecosystems, 35% from agriculture, and 15% from demand-side measures. The potential varies sixfold across the five regions assessed (0.75-4.8 GtCO2eq yr-1 ) and the top 15 countries account for about 60% of the global potential. Protection of forests and other ecosystems and demand-side measures present particularly high mitigation efficiency, high provision of co-benefits, and relatively lower costs. The feasibility assessment suggests that governance, economic investment, and socio-cultural conditions influence the likelihood that land-based mitigation potentials are realized. A substantial portion of potential (80%) is in developing countries and LDCs, where feasibility barriers are of greatest concern. Assisting countries to overcome barriers may result in significant quantities of near-term, low-cost mitigation while locally achieving important climate adaptation and development benefits. Opportunities among countries vary widely depending on types of land-based measures available, their potential co-benefits and risks, and their feasibility. Enhanced investments and country-specific plans that accommodate this complexity are urgently needed to realize the large global potential from improved land stewardship.


Assuntos
Mudança Climática , Ecossistema , Agricultura , Estudos de Viabilidade , Políticas
8.
Clim Change ; 163(3): 1569-1586, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364667

RESUMO

In the twenty-first century, modern bioenergy could become one of the largest sources of energy, partially replacing fossil fuels and contributing to climate change mitigation. Agricultural and forestry biomass residues form an inexpensive bioenergy feedstock with low greenhouse gas (GHG) emissions, if harvested sustainably. We analysed quantities of biomass residues supplied for energy and their sensitivities in harmonised bioenergy demand scenarios across eight integrated assessment models (IAMs) and compared them with literature-estimated residue availability. IAM results vary substantially, at both global and regional scales, but suggest that residues could meet 7-50% of bioenergy demand towards 2050, and 2-30% towards 2100, in a scenario with 300 EJ/year of exogenous bioenergy demand towards 2100. When considering mean literature-estimated availability, residues could provide around 55 EJ/year by 2050. Inter-model differences primarily arise from model structure, assumptions, and the representation of agriculture and forestry. Despite these differences, drivers of residues supplied and underlying cost dynamics are largely similar across models. Higher bioenergy demand or biomass prices increase the quantity of residues supplied for energy, though their effects level off as residues become depleted. GHG emission pricing and land protection can increase the costs of using land for lignocellulosic bioenergy crop cultivation, which increases residue use at the expense of lignocellulosic bioenergy crops. In most IAMs and scenarios, supplied residues in 2050 are within literature-estimated residue availability, but outliers and sustainability concerns warrant further exploration. We conclude that residues can cost-competitively play an important role in the twenty-first century bioenergy supply, though uncertainties remain concerning (regional) forestry and agricultural production and resulting residue supply potentials.

9.
Glob Chang Biol ; 26(3): 1576-1591, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31655005

RESUMO

Afforestation is considered a cost-effective and readily available climate change mitigation option. In recent studies afforestation is presented as a major solution to limit climate change. However, estimates of afforestation potential vary widely. Moreover, the risks in global mitigation policy and the negative trade-offs with food security are often not considered. Here we present a new approach to assess the economic potential of afforestation with the IMAGE 3.0 integrated assessment model framework. In addition, we discuss the role of afforestation in mitigation pathways and the effects of afforestation on the food system under increasingly ambitious climate targets. We show that afforestation has a mitigation potential of 4.9 GtCO2 /year at 200 US$/tCO2 in 2050 leading to large-scale application in an SSP2 scenario aiming for 2°C (410 GtCO2 cumulative up to 2100). Afforestation reduces the overall costs of mitigation policy. However, it may lead to lower mitigation ambition and lock-in situations in other sectors. Moreover, it bears risks to implementation and permanence as the negative emissions are increasingly located in regions with high investment risks and weak governance, for example in Sub-Saharan Africa. Afforestation also requires large amounts of land (up to 1,100 Mha) leading to large reductions in agricultural land. The increased competition for land could lead to higher food prices and an increased population at risk of hunger. Our results confirm that afforestation has substantial potential for mitigation. At the same time, we highlight that major risks and trade-offs are involved. Pathways aiming to limit climate change to 2°C or even 1.5°C need to minimize these risks and trade-offs in order to achieve mitigation sustainably.


Assuntos
Agricultura , Mudança Climática , África Subsaariana , Abastecimento de Alimentos
10.
Nat Commun ; 9(1): 2938, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087330

RESUMO

Scenarios that limit global warming to below 2 °C by 2100 assume significant land-use change to support large-scale carbon dioxide (CO2) removal from the atmosphere by afforestation/reforestation, avoided deforestation, and Biomass Energy with Carbon Capture and Storage (BECCS). The more ambitious mitigation scenarios require even greater land area for mitigation and/or earlier adoption of CO2 removal strategies. Here we show that additional land-use change to meet a 1.5 °C climate change target could result in net losses of carbon from the land. The effectiveness of BECCS strongly depends on several assumptions related to the choice of biomass, the fate of initial above ground biomass, and the fossil-fuel emissions offset in the energy system. Depending on these factors, carbon removed from the atmosphere through BECCS could easily be offset by losses due to land-use change. If BECCS involves replacing high-carbon content ecosystems with crops, then forest-based mitigation could be more efficient for atmospheric CO2 removal than BECCS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA