Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 14(1): 207, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789433

RESUMO

Previous evidence suggests elevated levels of oxidatively-induced DNA damage, particularly 8-hydroxy-2'-deoxyguanosine (8-OH-dG), and abnormalities in the repair of 8-OH-dG by the base excision repair (BER) in bipolar disorder (BD). However, the genetic disposition of these abnormalities remains unknown. In this study, we aimed to investigate the levels of oxidatively-induced DNA damage and BER mechanisms in individuals with BD and their siblings, as compared to healthy controls (HCs). 46 individuals with BD, 41 siblings of individuals with BD, and 51 HCs were included in the study. Liquid chromatography-tandem mass spectrometry was employed to evaluate the levels of 8-OH-dG in urine, which were then normalized based on urine creatinine levels. The real-time-polymerase chain reaction was used to measure the expression levels of 8-oxoguanine DNA glycosylase 1 (OGG1), apurinic/apyrimidinic endonuclease 1 (APE1), poly ADP-ribose polymerase 1 (PARP1), and DNA polymerase beta (POLß). The levels of 8-OH-dG were found to be elevated in both individuals with BD and their siblings when compared to the HCs. The OGG1 and APE1 expressions were downregulated, while POLß expressions were upregulated in both the patient and sibling groups compared to the HCs. Age, smoking status, and the number of depressive episodes had an impact on APE1 expression levels in the patient group while body mass index, smoking status, and past psychiatric history had an impact on 8-OH-dG levels in siblings. Both individuals with BD and unaffected siblings presented similar abnormalities regarding oxidatively-induced DNA damage and BER, suggesting a link between abnormalities in DNA damage/BER mechanisms and familial susceptibility to BD. Our findings suggest that targeting the oxidatively-induced DNA damage and BER pathway could offer promising therapeutic strategies for reducing the risk of age-related diseases and comorbidities in individuals with a genetic predisposition to BD.


Assuntos
8-Hidroxi-2'-Desoxiguanosina , Transtorno Bipolar , Dano ao DNA , DNA Glicosilases , Reparo do DNA , Estresse Oxidativo , Irmãos , Humanos , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Feminino , Masculino , Adulto , DNA Glicosilases/genética , Estresse Oxidativo/genética , Pessoa de Meia-Idade , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Estudos de Casos e Controles , Adulto Jovem , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Reparo por Excisão
2.
J Steroid Biochem Mol Biol ; 229: 106273, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36813139

RESUMO

Scleroderma is a rare autoimmune disease characterized by progressive fibrosis of the skin and internal organs. Oxidative damage to macromolecules has been reported to occur in scleroderma. Among the macromolecular damages, oxidative DNA damage is a sensitive and cumulative marker of oxidative stress and is of particular interest because of its cytotoxic and mutagenic effects. Vitamin D supplementation is an important part of treatment, as vitamin D deficiency is a common problem in scleroderma. Furthermore, the antioxidant role of vitamin D has been demonstrated in recent studies. In light of this information, the present study aimed to comprehensively investigate oxidative DNA damage in scleroderma at baseline and to evaluate the contribution of vitamin D supplementation to the attenuation of DNA damage in a prospectively designed study. In accordance with these objectives, oxidative DNA damage in scleroderma was evaluated by measurement of stable damage products (8-oxo-dG, S-cdA, and R-cdA) in urine by liquid chromatography-tandem mass spectrometry (LC-MS/MS); serum vitamin D levels were determined by high-resolution mass spectrometry (HR-MS); VDR gene expression and four polymorphisms in the VDR gene (rs2228570, rs1544410, rs7975232, and rs731236) were analyzed by RT-PCR and compared with healthy subjects. In the prospective part, the DNA damage and the VDR expression of the patients who received vitamin D were re-evaluated after the replacement. As a result of this study, we demonstrated that all DNA damage products were increased in scleroderma patients compared to healthy controls, whereas vitamin D levels and VDR expression were significantly lower (p < 0.05). After supplementation, statistical significance (p < 0.05) was reached for the decrease in 8-oxo-dG and the increase in VDR expression. Attenuated 8-oxo-dG after replacement in patients with lung, joint, and gastrointestinal system involvement demonstrated the efficacy of vitamin D in scleroderma patients with organ involvement. To the best of our knowledge, this is the first study to examine oxidative DNA damage in scleroderma comprehensively and to evaluate the effects of vitamin D on DNA damage using a prospective design.


Assuntos
Predisposição Genética para Doença , Vitamina D , Humanos , Estudos Prospectivos , 8-Hidroxi-2'-Desoxiguanosina , Cromatografia Líquida , Receptores de Calcitriol/genética , Espectrometria de Massas em Tandem , Vitaminas/farmacologia , Vitaminas/uso terapêutico , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Genótipo
3.
Bioanalysis ; 14(19): 1271-1280, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36453751

RESUMO

Aim: IDH mutations have been identified as frequent molecular lesions in several tumor types, particularly in gliomas. As a putative marker of IDH mutations, elevated D-2-HG has been reported in glioma, acute myeloid leukemia and intrahepatic cholangiocarcinoma. Excessive production of L-2-HG has also been described in renal cell carcinoma and 2-hydroxyaciduria. Materials & methods: The authors present a fully optimized stable isotope dilution multiple reaction monitoring method for quantification of D-/L-2-HG using LC-MS/MS. This is the first method validation study performed on cerebrospinal fluid, plasma and urine demonstrating clinical applicability with samples from glioma patients. Results & conclusion: This method validation study showed high accuracy and precision with low limit of detection and limit of quantification values. The authors believe that the presented approach is highly applicable for basic and clinical research on related pathologies.


Assuntos
Glioma , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Glioma/diagnóstico , Glioma/genética , Glioma/patologia , Glutaratos
4.
J Neuropathol Exp Neurol ; 81(7): 502-510, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35582888

RESUMO

Isocitrate dehydrogenase-1 (IDH1) mutation is accepted as one of the earliest events in tumorigenesis in gliomas. This mutation causes preferential accumulation of D- relative to L-enantiomer of 2-hydroxyglutarate (2-HG). Minimally invasive techniques to detect IDH1 mutation may prove useful for clinical practice. We adopted 2 different diagnostic approaches to detect IDH1 mutation status in glioma patients: Evaluation of D- and L-2-HG levels in cerebrospinal fluid (CSF), urine, and plasma, and identification of IDH1 mutation using cell-free circulating tumor DNA (ctDNA) in CSF and plasma. Forty-nine glioma patients in different stages were included. Levels of D- and L-2-HG were determined using liquid chromatography-tandem mass spectrometry; IDH1 R132H mutation was determined by digital-PCR. D-2-HG levels and D/L-2-HG ratio (rDL) in CSF and rDL in plasma were significantly higher in the mutant group than in the wild-type group (p = 0.029, 0.032, 0.001, respectively). The IDH1 mutation detection rates in CSF- and plasma-ctDNA were 63.2% and 25.0%, respectively. These data indicate that D-2-HG values in CSF and rDL in plasma and CSF can be considered as significant contributors to the identification of IDH1 mutation status. In addition, detection of IDH1 mutation in CSF-ctDNA from glioma patients provides a basis for future use of ctDNA for minimally invasive clinical assessment of gliomas.


Assuntos
Neoplasias Encefálicas , DNA Tumoral Circulante , Glioma , Neoplasias Encefálicas/patologia , Glioma/patologia , Glutaratos , Humanos , Isocitrato Desidrogenase/genética , Mutação/genética
5.
Clin Immunol ; 239: 108997, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398518

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is a rare autoimmune disease characterized by progressive fibrosis of the skin and internal organs. Besides genetics risk factors, understanding the epigenetic modifications in SSc has been gaining acceleration in recent years. Epigenetic modifications are reversible and defined as druggable targets. In this context, it is highly important to present a systemic perspective to epigenetic modifications of SSc in terms of both pathogenesis and clinical utility. MATERIAL AND METHODS: DNA samples from the whole blood specimens of the 41 SSc patients and 27 healthy controls (HCs) were obtained. Absolute quantification of 5-mC, 5-hmdC, 5-cadC, 5-fdC, and 5-hmdU as the DNA methylation and demethylation products were performed using 2D-UPLC-MS/MS. Demographic data and clinical scores were recorded in detail. RESULTS: 5-hmdU was significantly higher in SSc patients while 5-hmdC was lower compared to the HCs (p < 0.01, p = 0.012 respectively). 5-cadC and 5-fdC had upward trend in SSc (p = 0.064; p = 0.066). These results support that SSc patients tend to have a global hypomethylation pattern. Clinical analyzes revealed that lung, gastrointestinal, joint, and vascular involvement of SSc is also associated with increased demethylation or decreased methylation profile. CONCLUSION: We performed absolute quantification of epigenetic DNA modification products in SSc for the first time. We demonstrated an upward trend in global hypomethylation in SSc. Furthermore, as a result of detailed clinical analyzes, the relationship between lung, GIS, and vascular involvement with epigenetic changes was shown. We believe that absolute quantification of DNA methylation and demethylation products with novel technologies can provide a deep understanding of disease pathogenesis and has the potential to mark an era for developing new therapeutic strategies.


Assuntos
Metilação de DNA , Escleroderma Sistêmico , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , DNA , Epigênese Genética , Humanos , Escleroderma Sistêmico/genética , Espectrometria de Massas em Tandem
6.
Reprod Toxicol ; 103: 171-180, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34051274

RESUMO

This study aims to assess the relationship between oxidative DNA damage and iron status in women with gestational diabetes mellitus (GDM) compared to those with normal glucose tolerance in the first and the second trimesters of pregnancy. Maternal serum and urine samples were collected in the 11th-14th weeks and the 24th-28th weeks of gestation. In addition to oral glucose tolerance test in the second trimester, fasting blood glucose, HbA1c, ferritin and hemoglobin levels were measured in blood samples. Urinary levels of oxidative DNA damage products 8-hydroxy-2'-deoxyguanosine (8-OH-dG) and 8,5'-cyclo-2'-deoxyadenosines (S-cdA, R-cdA) were determined using liquid chromatography-tandem mass spectrometry with isotope-dilution. In the first trimester, urinary 8-OH-dG levels were found higher in the GDM group (n = 33) than in the control group (n = 84) (p = 0.006). R-cdA and S-cdA levels were not significantly different between the two groups (p = 0.794 and p = 0.792 respectively). When the cases were stratified according to their first trimester ferritin levels, women with ≥50th centile (≥130 ng/mL) demonstrated higher levels of 8-OH-dG and R-cdA than those under <50th centile (p = 0.034, p = 0.009). In the GDM group, there was a positive correlation between the second trimester 8-OH-dG and ferritin and 1st-hour glucose levels (p = 0.014, p = 0.020). This is the first study where oxidative DNA damage is evaluated in both early and late periods of pregnancy. Our findings reveal an association between GDM and iron status and oxidative DNA damage.


Assuntos
Diabetes Gestacional/metabolismo , Ferro/metabolismo , Estresse Oxidativo/fisiologia , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Glicemia/análise , Cromatografia Líquida , Dano ao DNA , Desoxiadenosinas , Feminino , Humanos , Gravidez , Primeiro Trimestre da Gravidez/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA