Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1873): 20220008, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36744569

RESUMO

Plant domestication and movement are large contributors to the success of new diseases. The introduction of new host species can result in accelerated evolutionary changes in pathogens, affecting long-established coevolutionary dynamics. This has been observed in poplars where severe epidemics of pathogens that were innocuous in their natural pathosystems occurred following host domestication. The North American fungus Sphaerulina musiva is responsible for endemic leaf spots on Populus deltoides. We show that the expansion of poplar cultivation resulted in the emergence of a new lineage of this pathogen that causes stem infections on a new host, P. balsamifera. This suggests a host shift since this is not a known host. Genome analysis of this emerging lineage reveals a mosaic pattern with islands of diversity separated by fixed genome regions, which is consistent with a homoploid hybridization event between two individuals that produced a hybrid swarm. Genome regions of extreme divergence and low diversity are enriched in genes involved in host-pathogen interactions. The specialization of this emerging lineage to a new host and its clonal propagation represents a serious threat to poplars and could affect both natural and planted forests. This work provides a clear example of the changes created by the intensification of tree cultivation that facilitate the emergence of specialized pathogens, jeopardizing the natural equilibrium between hosts and pathogens. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.


Assuntos
Populus , Árvores , Humanos , Populus/genética , Florestas , Doenças das Plantas/microbiologia
2.
Mol Plant Microbe Interact ; 36(1): 26-46, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36306437

RESUMO

Phytophthora species are oomycete plant pathogens that cause great economic and ecological impacts. The Phytophthora genus includes over 180 known species, infecting a wide range of plant hosts, including crops, trees, and ornamentals. We sequenced the genomes of 31 individual Phytophthora species and 24 individual transcriptomes to study genetic relationships across the genus. De novo genome assemblies revealed variation in genome sizes, numbers of predicted genes, and in repetitive element content across the Phytophthora genus. A genus-wide comparison evaluated orthologous groups of genes. Predicted effector gene counts varied across Phytophthora species by effector family, genome size, and plant host range. Predicted numbers of apoplastic effectors increased as the host range of Phytophthora species increased. Predicted numbers of cytoplasmic effectors also increased with host range but leveled off or decreased in Phytophthora species that have enormous host ranges. With extensive sequencing across the Phytophthora genus, we now have the genomic resources to evaluate horizontal gene transfer events across the oomycetes. Using a machine-learning approach to identify horizontally transferred genes with bacterial or fungal origin, we identified 44 candidates over 36 Phytophthora species genomes. Phylogenetic reconstruction indicates that the transfers of most of these 44 candidates happened in parallel to major advances in the evolution of the oomycetes and Phytophthora spp. We conclude that the 31 genomes presented here are essential for investigating genus-wide genomic associations in genus Phytophthora. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Phytophthora , Phytophthora/genética , Filogenia , Transferência Genética Horizontal , Genoma , Genômica , Plantas/genética
3.
Commun Biol ; 5(1): 477, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589982

RESUMO

Invasive exotic pathogens pose a threat to trees and forest ecosystems worldwide, hampering the provision of essential ecosystem services such as carbon sequestration and water purification. Hybridization is a major evolutionary force that can drive the emergence of pathogens. Phytophthora ramorum, an emergent pathogen that causes the sudden oak and larch death, spreads as reproductively isolated divergent clonal lineages. We use a genomic biosurveillance approach by sequencing genomes of P. ramorum from survey and inspection samples and report the discovery of variants of P. ramorum that are the result of hybridization via sexual recombination between North American and European lineages. We show that these hybrids are viable, can infect a host and produce spores for long-term survival and propagation. Genome sequencing revealed genotypic combinations at 54,515 single nucleotide polymorphism loci not present in parental lineages. More than 6,000 of those genotypes are predicted to have a functional impact in genes associated with host infection, including effectors, carbohydrate-active enzymes and proteases. We also observed post-meiotic mitotic recombination that could generate additional genotypic and phenotypic variation and contribute to homoploid hybrid speciation. Our study highlights the importance of plant pathogen biosurveillance to detect variants, including hybrids, and inform management and control.


Assuntos
Biovigilância , Phytophthora , Quercus , Ecossistema , Genômica , Doenças das Plantas , Quercus/genética
4.
Phytopathology ; 111(1): 116-127, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33112215

RESUMO

Many current tree improvement programs are incorporating assisted gene flow strategies to match reforestation efforts with future climates. This is the case for the lodgepole pine (Pinus contorta var. latifolia), the most extensively planted tree in western Canada. Knowledge of the structure and origin of pathogen populations associated with this tree would help improve the breeding effort. Recent outbreaks of the Dothistroma needle blight (DNB) pathogen Dothistroma septosporum on lodgepole pine in British Columbia and its discovery in Alberta plantations raised questions about the diversity and population structure of this pathogen in western Canada. Using genotyping-by-sequencing on 119 D. septosporum isolates from 16 natural pine populations and plantations from this area, we identified four genetic lineages, all distinct from the other DNB lineages from outside of North America. Modeling of the population history indicated that these lineages diverged between 31.4 and 7.2 thousand years ago, coinciding with the last glacial maximum and the postglacial recolonization of lodgepole pine in western North America. The lineage found in the Kispiox Valley from British Columbia, where an unprecedented DNB epidemic occurred in the 1990s, was close to demographic equilibrium and displayed a high level of haplotypic diversity. Two lineages found in Alberta and Prince George (British Columbia) showed departure from random mating and contemporary gene flow, likely resulting from pine breeding activities and material exchanges in these areas. The increased movement of planting material could have some major consequences by facilitating secondary contact between genetically isolated DNB lineages, possibly resulting in new epidemics.


Assuntos
Pinus , Doenças das Plantas , Ascomicetos , Colúmbia Britânica , Humanos , América do Norte , Melhoramento Vegetal
5.
PLoS One ; 15(2): e0221742, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32023247

RESUMO

Wood and wood products can harbor microorganisms that can raise phytosanitary concerns in countries importing or exporting these products. To evaluate the efficacy of wood treatment on the survival of microorganisms of phytosanitary concern the method of choice is to grow microbes in petri dishes for subsequent identification. However, some plant pathogens are difficult or impossible to grow in axenic cultures. A molecular methodology capable of detecting living fungi and fungus-like organisms in situ can provide a solution. RNA represents the transcription of genes and can become rapidly unstable after cell death, providing a proxy measure of viability. We designed and used RNA-based molecular diagnostic assays targeting genes essential to vital processes and assessed their presence in wood colonized by fungi and oomycetes through reverse transcription and real-time polymerase chain reaction (PCR). A stability analysis was conducted by comparing the ratio of mRNA to gDNA over time following heat treatment of mycelial cultures of the Oomycete Phytophthora ramorum and the fungus Grosmannia clavigera. The real-time PCR results indicated that the DNA remained stable over a period of 10 days post treatment in heat-treated samples, whereas mRNA could not be detected after 24 hours for P. ramorum or 96 hours for G. clavigera. Therefore, this method provides a reliable way to evaluate the viability of these pathogens and offers a potential way to assess the effectiveness of existing and emerging wood treatments. This can have important phytosanitary impacts on assessing both timber and non-timber forest products of commercial value in international wood trade.


Assuntos
Ophiostomatales/isolamento & purificação , Phytophthora/isolamento & purificação , Madeira/microbiologia , Sobrevivência Celular , DNA Fúngico/análise , Ophiostomatales/citologia , Ophiostomatales/genética , Phytophthora/citologia , Phytophthora/genética , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , RNA Fúngico/análise
6.
mBio ; 10(2)2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862749

RESUMO

Invasive alien species often have reduced genetic diversity and must adapt to new environments. Given the success of many invasions, this is sometimes called the genetic paradox of invasion. Phytophthora ramorum is invasive, limited to asexual reproduction within four lineages, and presumed clonal. It is responsible for sudden oak death in the United States, sudden larch death in Europe, and ramorum blight in North America and Europe. We sequenced the genomes of 107 isolates to determine how this pathogen can overcome the invasion paradox. Mitotic recombination (MR) associated with transposons and low gene density has generated runs of homozygosity (ROH) affecting 2,698 genes, resulting in novel genotypic diversity within the lineages. One ROH enriched in effectors was fixed in the NA1 lineage. An independent ROH affected the same scaffold in the EU1 lineage, suggesting an MR hot spot and a selection target. Differences in host infection between EU1 isolates with and without the ROH suggest that they may differ in aggressiveness. Non-core regions (not shared by all lineages) had signatures of accelerated evolution and were enriched in putative pathogenicity genes and transposons. There was a striking pattern of gene loss, including all effectors, in the non-core EU2 genome. Positive selection was observed in 8.0% of RxLR and 18.8% of Crinkler effector genes compared with 0.9% of the core eukaryotic gene set. We conclude that the P. ramorum lineages are diverging via a rapidly evolving non-core genome and that the invasive asexual lineages are not clonal, but display genotypic diversity caused by MR.IMPORTANCE Alien species are often successful invaders in new environments, despite the introduction of a few isolates with a reduced genetic pool. This is called the genetic paradox of invasion. We found two mechanisms by which the invasive forest pathogen causing sudden oak and sudden larch death can evolve. Extensive mitotic recombination producing runs of homozygosity generates genotypic diversity even in the absence of sexual reproduction, and rapid turnover of genes in the non-core, or nonessential portion of genome not shared by all isolates, allows pathogenicity genes to evolve rapidly or be eliminated while retaining essential genes. Mitotic recombination events occur in genomic hot spots, resulting in similar ROH patterns in different isolates or groups; one ROH, independently generated in two different groups, was enriched in pathogenicity genes and may be a target for selection. This provides important insights into the evolution of invasive alien pathogens and their potential for adaptation and future persistence.


Assuntos
Evolução Molecular , Variação Genética , Mitose , Phytophthora/classificação , Phytophthora/genética , Doenças das Plantas/microbiologia , Recombinação Genética , Europa (Continente) , Florestas , Genótipo , América do Norte , Análise de Sequência de DNA
7.
Eye (Lond) ; 33(4): 640-647, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30504828

RESUMO

BACKGROUND: Annually 2.7 million individuals are offered screening for diabetic retinopathy (DR) in England. Spectral-Domain Optical Coherence Tomography (SD-OCT) has the potential to relieve pressure on NHS services by correctly identifying patients who are screen positive for maculopathy on two-dimensional photography without evidence of clinically significant macular oedema (CSMO), limiting the number of referrals to hospitals. We aim to assess whether the addition of SDOCT imaging in digital surveillance clinics is a cost-effective intervention relative to hospital eye service (HES) follow-up. METHODS: We used patient-level data from the Gloucestershire Diabetic Eye Screening Service linked to the local digital surveillance programme and HES between 2012 and 2015. A model was used to simulate the progression of individuals with background diabetic retinopathy (R1) and diabetic maculopathy (M1) following DR screening across the clinic pathways over 12 months. RESULTS: Between January 2012 and December 2014, 696 people undergoing DR screening were found to have screen-positive maculopathy in at least one eye for the first time, with a total of 766 eyes identified as having R1M1. The mean annual cost of assessing and surveillance through the SD-OCT clinic pathway was £101 (95% CI: 91-139) as compared with £177 (95%CI: 164-219) under the HES pathway. Surveillance under an SD-OCT clinic generated cost savings of £76 (95% CI: 70-81) per patient. CONCLUSIONS: Our analysis shows that SD-OCT surveillance of patients diagnosed as R1M1 at DR screening is not only cost-effective but generates considerable cost savings.


Assuntos
Retinopatia Diabética/diagnóstico , Edema Macular/patologia , Programas de Rastreamento/economia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise Custo-Benefício , Diagnóstico por Computador/economia , Diagnóstico por Computador/métodos , Inglaterra , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medicina Estatal/economia , Tomografia de Coerência Óptica , Adulto Jovem
8.
PeerJ ; 6: e4392, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29492338

RESUMO

Plant diseases caused by fungi and Oomycetes represent worldwide threats to crops and forest ecosystems. Effective prevention and appropriate management of emerging diseases rely on rapid detection and identification of the causal pathogens. The increase in genomic resources makes it possible to generate novel genome-enhanced DNA detection assays that can exploit whole genomes to discover candidate genes for pathogen detection. A pipeline was developed to identify genome regions that discriminate taxa or groups of taxa and can be converted into PCR assays. The modular pipeline is comprised of four components: (1) selection and genome sequencing of phylogenetically related taxa, (2) identification of clusters of orthologous genes, (3) elimination of false positives by filtering, and (4) assay design. This pipeline was applied to some of the most important plant pathogens across three broad taxonomic groups: Phytophthoras (Stramenopiles, Oomycota), Dothideomycetes (Fungi, Ascomycota) and Pucciniales (Fungi, Basidiomycota). Comparison of 73 fungal and Oomycete genomes led the discovery of 5,939 gene clusters that were unique to the targeted taxa and an additional 535 that were common at higher taxonomic levels. Approximately 28% of the 299 tested were converted into qPCR assays that met our set of specificity criteria. This work demonstrates that a genome-wide approach can efficiently identify multiple taxon-specific genome regions that can be converted into highly specific PCR assays. The possibility to easily obtain multiple alternative regions to design highly specific qPCR assays should be of great help in tackling challenging cases for which higher taxon-resolution is needed.

9.
Plant Dis ; 101(5): 666-673, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-30678572

RESUMO

Phytophthora ramorum is the causal agent of sudden oak death and sudden larch death, and is also responsible for causing ramorum blight on woody ornamental plants. Many microsatellite markers are available to characterize the genetic diversity and population structure of P. ramorum. However, only two markers are polymorphic in the NA2 lineage, which is predominant in Canadian nurseries. Microsatellite motifs were mined from whole-genome sequence data of six P. ramorum NA2 isolates. Of the 43 microsatellite primer pairs selected, 13 loci displayed different allele sizes among the four P. ramorum lineages, 10 loci displayed intralineage variation in the EU1, EU2, and/or NA1 lineages, and 12 microsatellites displayed polymorphism in the NA2 lineage. Genotyping of 272 P. ramorum NA2 isolates collected in nurseries in British Columbia, Canada, from 2004 to 2013 revealed 12 multilocus genotypes (MLGs). One MLG was dominant when examined over time and across sampling locations, and only a few mutations separated the 12 MLGs. The NA2 population observed in Canadian nurseries also showed no signs of sexual recombination, similar to what has been observed in previous studies. The markers developed in this study can be used to assess P. ramorum inter- and intralineage genetic diversity and generate a better understanding of the population structure and migration patterns of this important plant pathogen, especially for the lesser-characterized NA2 lineage.

10.
Genom Data ; 10: 85-88, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27752469

RESUMO

The Phytophthora genus comprises of some of the most destructive plant pathogens and attack a wide range of hosts including economically valuable tree species, both angiosperm and gymnosperm. Many known species of Phytophthora are invasive and have been introduced through nursery and agricultural trade. As part of a larger project aimed at utilizing genomic data for forest disease diagnostics, pathogen detection and monitoring (The TAIGA project: Tree Aggressors Identification using Genomic Approaches; http://taigaforesthealth.com/), we sequenced the genomes of six important Phytophthora species that are important invasive pathogens of trees and a serious threat to the international trade of forest products. This genomic data was used to develop highly sensitive and specific detection assays and for genome comparisons and to make evolutionary inferences and will be useful to the broader plant and tree health community. These WGS data have been deposited in the International Nucleotide Sequence Database Collaboration (DDBJ/ENA/GenBank) under the accession numbers AUPN01000000, AUVH01000000, AUWJ02000000, AUUF02000000, AWVV02000000 and AWVW02000000.

11.
PLoS One ; 10(8): e0134265, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26274489

RESUMO

Invasive alien tree pathogens can cause significant economic losses as well as large-scale damage to natural ecosystems. Early detection to prevent their establishment and spread is an important approach used by several national plant protection organizations (NPPOs). Molecular detection tools targeting 10 of the most unwanted alien forest pathogens in Canada were developed as part of the TAIGA project (http://taigaforesthealth.com/). Forest pathogens were selected following an independent prioritization. Specific TaqMan real-time PCR detection assays were designed to function under homogeneous conditions so that they may be used in 96- or 384-well plate format arrays for high-throughput testing of large numbers of samples against multiple targets. Assays were validated for 1) specificity, 2) sensitivity, 3) precision, and 4) robustness on environmental samples. All assays were highly specific when evaluated against a panel of pure cultures of target and phylogenetically closely-related species. Sensitivity, evaluated by assessing the limit of detection (with a threshold of 95% of positive samples), was found to be between one and ten target gene region copies. Precision or repeatability of each assay revealed a mean coefficient of variation of 3.4%. All assays successfully allowed detection of target pathogen on positive environmental samples, without any non-specific amplification. These molecular detection tools will allow for rapid and reliable detection of 10 of the most unwanted alien forest pathogens in Canada.


Assuntos
Fungos/classificação , Fungos/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Árvores/microbiologia , Canadá , DNA Fúngico/análise , Florestas , Fungos/genética , Técnicas de Tipagem Micológica/métodos , Técnicas de Tipagem Micológica/normas , Filogenia , Reação em Cadeia da Polimerase em Tempo Real/normas , Sensibilidade e Especificidade
12.
BMC Cancer ; 15: 171, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25881079

RESUMO

BACKGROUND: To determine the prevalence of RET rearrangement genes, RET copy number gains and expression in tumor samples from four Phase III non-small-cell lung cancer (NSCLC) trials of vandetanib, a selective inhibitor of VEGFR, RET and EGFR signaling, and to determine any association with outcome to vandetanib treatment. METHODS: Archival tumor samples from the ZODIAC ( NCT00312377 , vandetanib ± docetaxel), ZEAL ( NCT00418886 , vandetanib ± pemetrexed), ZEPHYR ( NCT00404924 , vandetanib vs placebo) and ZEST ( NCT00364351 , vandetanib vs erlotinib) studies were evaluated by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in 944 and 1102 patients. RESULTS: The prevalence of RET rearrangements by FISH was 0.7% (95% CI 0.3-1.5%) among patients with a known result. Seven tumor samples were positive for RET rearrangements (vandetanib, n = 3; comparator, n = 4). 2.8% (n = 26) of samples had RET amplification (innumerable RET clusters, or ≥7 copies in > 10% of tumor cells), 8.1% (n = 76) had low RET gene copy number gain (4-6 copies in ≥40% of tumor cells) and 8.3% (n = 92) were RET expression positive (signal intensity ++ or +++ in >10% of tumor cells). Of RET-rearrangement-positive patients, none had an objective response in the vandetanib arm and one patient responded in the comparator arm. Radiologic evidence of tumor shrinkage was observed in two patients treated with vandetanib and one treated with comparator drug. The objective response rate was similar in the vandetanib and comparator arms for patients positive for RET copy number gains or RET protein expression. CONCLUSIONS: We have identified prevalence for three RET biomarkers in a population predominated by non-Asians and smokers. RET rearrangement prevalence was lower than previously reported. We found no evidence of a differential benefit for efficacy by IHC and RET gene copy number gains. The low prevalence of RET rearrangements (0.7%) prevents firm conclusions regarding association of vandetanib treatment with efficacy in the RET rearrangement NSCLC subpopulation. TRIAL REGISTRATION: Randomized Phase III clinical trials ( NCT00312377 , ZODIAC; NCT00418886 , ZEAL; NCT00364351 , ZEST; NCT00404924 , ZEPHYR).


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Piperidinas/uso terapêutico , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Quinazolinas/uso terapêutico , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Feminino , Amplificação de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Translocação Genética , Resultado do Tratamento
13.
J Nematol ; 42(2): 101-10, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22736846

RESUMO

To reduce the risks associated with global transport of wood infested with pinewood nematode Bursaphelenchus xylophilus, microwave irradiation was tested at 14 temperatures in replicated wood samples to determine the temperature that would kill 99.9968% of nematodes in a sample of ≥ 100,000 organisms, meeting a level of efficacy of Probit 9. Treatment of these heavily infested wood samples (mean of > 1,000 nematodes/g of sapwood) produced 100% mortality at 56 °C and above, held for 1 min. Because this "brute force" approach to Probit 9 treats individual nematodes as the observational unit regardless of the number of wood samples it takes to treat this number of organisms, we also used a modeling approach. The best fit was to a Probit function, which estimated lethal temperature at 62.2 (95% confidence interval 59.0-70.0) °C. This discrepancy between the observed and predicted temperature to achieve Probit 9 efficacy may have been the result of an inherently limited sample size when predicting the true mean from the total population. The rate of temperature increase in the small wood samples (rise time) did not affect final nematode mortality at 56 °C. In addition, microwave treatment of industrial size, infested wood blocks killed 100% of > 200,000 nematodes at ≥ 56 °C held for 1 min in replicated wood samples. The 3(rd)-stage juvenile (J3) of the nematode, that is resistant to cold temperatures and desiccation, was abundant in our wood samples and did not show any resistance to microwave treatment. Regression analysis of internal wood temperatures as a function of surface temperature produced a regression equation that could be used with a relatively high degree of accuracy to predict internal wood temperatures, under the conditions of this study. These results provide strong evidence of the ability of microwave treatment to successfully eradicate B. xylophilus in infested wood at or above 56 °C held for 1 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA