Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCO Clin Cancer Inform ; 8: e2400008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38875514

RESUMO

PURPOSE: Rare cancers constitute over 20% of human neoplasms, often affecting patients with unmet medical needs. The development of effective classification and prognostication systems is crucial to improve the decision-making process and drive innovative treatment strategies. We have created and implemented MOSAIC, an artificial intelligence (AI)-based framework designed for multimodal analysis, classification, and personalized prognostic assessment in rare cancers. Clinical validation was performed on myelodysplastic syndrome (MDS), a rare hematologic cancer with clinical and genomic heterogeneities. METHODS: We analyzed 4,427 patients with MDS divided into training and validation cohorts. Deep learning methods were applied to integrate and impute clinical/genomic features. Clustering was performed by combining Uniform Manifold Approximation and Projection for Dimension Reduction + Hierarchical Density-Based Spatial Clustering of Applications with Noise (UMAP + HDBSCAN) methods, compared with the conventional Hierarchical Dirichlet Process (HDP). Linear and AI-based nonlinear approaches were compared for survival prediction. Explainable AI (Shapley Additive Explanations approach [SHAP]) and federated learning were used to improve the interpretation and the performance of the clinical models, integrating them into distributed infrastructure. RESULTS: UMAP + HDBSCAN clustering obtained a more granular patient stratification, achieving a higher average silhouette coefficient (0.16) with respect to HDP (0.01) and higher balanced accuracy in cluster classification by Random Forest (92.7% ± 1.3% and 85.8% ± 0.8%). AI methods for survival prediction outperform conventional statistical techniques and the reference prognostic tool for MDS. Nonlinear Gradient Boosting Survival stands in the internal (Concordance-Index [C-Index], 0.77; SD, 0.01) and external validation (C-Index, 0.74; SD, 0.02). SHAP analysis revealed that similar features drove patients' subgroups and outcomes in both training and validation cohorts. Federated implementation improved the accuracy of developed models. CONCLUSION: MOSAIC provides an explainable and robust framework to optimize classification and prognostic assessment of rare cancers. AI-based approaches demonstrated superior accuracy in capturing genomic similarities and providing individual prognostic information compared with conventional statistical methods. Its federated implementation ensures broad clinical application, guaranteeing high performance and data protection.


Assuntos
Inteligência Artificial , Medicina de Precisão , Humanos , Prognóstico , Medicina de Precisão/métodos , Feminino , Doenças Raras/classificação , Doenças Raras/genética , Doenças Raras/diagnóstico , Masculino , Aprendizado Profundo , Neoplasias/classificação , Neoplasias/genética , Neoplasias/diagnóstico , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/classificação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , Algoritmos , Pessoa de Meia-Idade , Idoso , Análise por Conglomerados
2.
Front Bioinform ; 4: 1306244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501111

RESUMO

Introduction: DNA methylation clocks presents advantageous characteristics with respect to the ambitious goal of identifying very early markers of disease, based on the concept that accelerated ageing is a reliable predictor in this sense. Methods: Such tools, being epigenomic based, are expected to be conditioned by sex and tissue specificities, and this work is about quantifying this dependency as well as that from the regression model and the size of the training set. Results: Our quantitative results indicate that elastic-net penalization is the best performing strategy, and better so when-unsurprisingly-the data set is bigger; sex does not appear to condition clocks performances and tissue specific clocks appear to perform better than generic blood clocks. Finally, when considering all trained clocks, we identified a subset of genes that, to the best of our knowledge, have not been presented yet and might deserve further investigation: CPT1A, MMP15, SHROOM3, SLIT3, and SYNGR. Conclusion: These factual starting points can be useful for the future medical translation of clocks and in particular in the debate between multi-tissue clocks, generally trained on a large majority of blood samples, and tissue-specific clocks.

3.
Sci Rep ; 14(1): 7403, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548805

RESUMO

Quantitative computed tomography (QCT)-based in silico models have demonstrated improved accuracy in predicting hip fractures with respect to the current gold standard, the areal bone mineral density. These models require that the femur bone is segmented as a first step. This task can be challenging, and in fact, it is often almost fully manual, which is time-consuming, operator-dependent, and hard to reproduce. This work proposes a semi-automated procedure for femur bone segmentation from CT images. The proposed procedure is based on the bone and joint enhancement filter and graph-cut algorithms. The semi-automated procedure performances were assessed on 10 subjects through comparison with the standard manual segmentation. Metrics based on the femur geometries and the risk of fracture assessed in silico resulting from the two segmentation procedures were considered. The average Hausdorff distance (0.03 ± 0.01 mm) and the difference union ratio (0.06 ± 0.02) metrics computed between the manual and semi-automated segmentations were significantly higher than those computed within the manual segmentations (0.01 ± 0.01 mm and 0.03 ± 0.02). Besides, a blind qualitative evaluation revealed that the semi-automated procedure was significantly superior (p < 0.001) to the manual one in terms of fidelity to the CT. As for the hip fracture risk assessed in silico starting from both segmentations, no significant difference emerged between the two (R2 = 0.99). The proposed semi-automated segmentation procedure overcomes the manual one, shortening the segmentation time and providing a better segmentation. The method could be employed within CT-based in silico methodologies and to segment large volumes of images to train and test fully automated and supervised segmentation methods.


Assuntos
Fêmur , Fraturas do Quadril , Humanos , Fêmur/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Extremidade Inferior , Fraturas do Quadril/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
4.
PLoS Comput Biol ; 20(2): e1011299, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38306404

RESUMO

Onco-hematological studies are increasingly adopting statistical mixture models to support the advancement of the genomically-driven classification systems for blood cancer. Targeting enhanced patients stratification based on the sole role of molecular biology attracted much interest and contributes to bring personalized medicine closer to reality. In onco-hematology, Hierarchical Dirichlet Mixture Models (HDMM) have become one of the preferred method to cluster the genomics data, that include the presence or absence of gene mutations and cytogenetics anomalies, into components. This work unfolds the standard workflow used in onco-hematology to improve patient stratification and proposes alternative approaches to characterize the components and to assign patient to them, as they are crucial tasks usually supported by a priori clinical knowledge. We propose (a) to compute the parameters of the multinomial components of the HDMM or (b) to estimate the parameters of the HDMM components as if they were Multivariate Fisher's Non-Central Hypergeometric (MFNCH) distributions. Then, our approach to perform patients assignments to the HDMM components is designed to essentially determine for each patient its most likely component. We show on simulated data that the patients assignment using the MFNCH-based approach can be superior, if not comparable, to using the multinomial-based approach. Lastly, we illustrate on real Acute Myeloid Leukemia data how the utilization of MFNCH-based approach emerges as a good trade-off between the rigorous multinomial-based characterization of the HDMM components and the common refinement of them based on a priori clinical knowledge.


Assuntos
Hematologia , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Genômica , Aberrações Cromossômicas
5.
JCO Clin Cancer Inform ; 7: e2300021, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37390377

RESUMO

PURPOSE: Synthetic data are artificial data generated without including any real patient information by an algorithm trained to learn the characteristics of a real source data set and became widely used to accelerate research in life sciences. We aimed to (1) apply generative artificial intelligence to build synthetic data in different hematologic neoplasms; (2) develop a synthetic validation framework to assess data fidelity and privacy preservability; and (3) test the capability of synthetic data to accelerate clinical/translational research in hematology. METHODS: A conditional generative adversarial network architecture was implemented to generate synthetic data. Use cases were myelodysplastic syndromes (MDS) and AML: 7,133 patients were included. A fully explainable validation framework was created to assess fidelity and privacy preservability of synthetic data. RESULTS: We generated MDS/AML synthetic cohorts (including information on clinical features, genomics, treatment, and outcomes) with high fidelity and privacy performances. This technology allowed resolution of lack/incomplete information and data augmentation. We then assessed the potential value of synthetic data on accelerating research in hematology. Starting from 944 patients with MDS available since 2014, we generated a 300% augmented synthetic cohort and anticipated the development of molecular classification and molecular scoring system obtained many years later from 2,043 to 2,957 real patients, respectively. Moreover, starting from 187 MDS treated with luspatercept into a clinical trial, we generated a synthetic cohort that recapitulated all the clinical end points of the study. Finally, we developed a website to enable clinicians generating high-quality synthetic data from an existing biobank of real patients. CONCLUSION: Synthetic data mimic real clinical-genomic features and outcomes, and anonymize patient information. The implementation of this technology allows to increase the scientific use and value of real data, thus accelerating precision medicine in hematology and the conduction of clinical trials.


Assuntos
Hematologia , Leucemia Mieloide Aguda , Humanos , Medicina de Precisão , Inteligência Artificial , Algoritmos
6.
J Pers Med ; 13(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36983660

RESUMO

BACKGROUND: Benign renal tumors, such as renal oncocytoma (RO), can be erroneously diagnosed as malignant renal cell carcinomas (RCC), because of their similar imaging features. Computer-aided systems leveraging radiomic features can be used to better discriminate benign renal tumors from the malignant ones. The purpose of this work was to build a machine learning model to distinguish RO from clear cell RCC (ccRCC). METHOD: We collected CT images of 77 patients, with 30 cases of RO (39%) and 47 cases of ccRCC (61%). Radiomic features were extracted both from the tumor volumes identified by the clinicians and from the tumor's zone of transition (ZOT). We used a genetic algorithm to perform feature selection, identifying the most descriptive set of features for the tumor classification. We built a decision tree classifier to distinguish between ROs and ccRCCs. We proposed two versions of the pipeline: in the first one, the feature selection was performed before the splitting of the data, while in the second one, the feature selection was performed after, i.e., on the training data only. We evaluated the efficiency of the two pipelines in cancer classification. RESULTS: The ZOT features were found to be the most predictive by the genetic algorithm. The pipeline with the feature selection performed on the whole dataset obtained an average ROC AUC score of 0.87 ± 0.09. The second pipeline, in which the feature selection was performed on the training data only, obtained an average ROC AUC score of 0.62 ± 0.17. CONCLUSIONS: The obtained results confirm the efficiency of ZOT radiomic features in capturing the renal tumor characteristics. We showed that there is a significant difference in the performances of the two proposed pipelines, highlighting how some already published radiomic analyses could be too optimistic about the real generalization capabilities of the models.

7.
Animals (Basel) ; 13(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36978498

RESUMO

Wound management is a fundamental task in standard clinical practice. Automated solutions already exist for humans, but there is a lack of applications regarding wound management for pets. Precise and efficient wound assessment is helpful to improve diagnosis and to increase the effectiveness of treatment plans for chronic wounds. In this work, we introduced a novel pipeline for the segmentation of pet wound images. Starting from a model pre-trained on human-based wound images, we applied a combination of transfer learning (TL) and active semi-supervised learning (ASSL) to automatically label a large dataset. Additionally, we provided a guideline for future applications of TL+ASSL training strategy on image datasets. We compared the effectiveness of the proposed training strategy, monitoring the performance of an EfficientNet-b3 U-Net model against the lighter solution provided by a MobileNet-v2 U-Net model. We obtained 80% of correctly segmented images after five rounds of ASSL training. The EfficientNet-b3 U-Net model significantly outperformed the MobileNet-v2 one. We proved that the number of available samples is a key factor for the correct usage of ASSL training. The proposed approach is a viable solution to reduce the time required for the generation of a segmentation dataset.

8.
Cells ; 12(6)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36980268

RESUMO

The aim of the present study was to provide a comprehensive characterization of whole genome DNA methylation patterns in replicative and ionizing irradiation- or doxorubicin-induced premature senescence, exhaustively exploring epigenetic modifications in three different human cell types: in somatic diploid skin fibroblasts and in bone marrow- and adipose-derived mesenchymal stem cells. With CpG-wise differential analysis, three epigenetic signatures were identified: (a) cell type- and treatment-specific signature; (b) cell type-specific senescence-related signature; and (c) cell type-transversal replicative senescence-related signature. Cluster analysis revealed that only replicative senescent cells created a distinct group reflecting notable alterations in the DNA methylation patterns accompanying this cellular state. Replicative senescence-associated epigenetic changes seemed to be of such an extent that they surpassed interpersonal dissimilarities. Enrichment in pathways linked to the nervous system and involved in the neurological functions was shown after pathway analysis of genes involved in the cell type-transversal replicative senescence-related signature. Although DNA methylation clock analysis provided no statistically significant evidence on epigenetic age acceleration related to senescence, a persistent trend of increased biological age in replicative senescent cultures of all three cell types was observed. Overall, this work indicates the heterogeneity of senescent cells depending on the tissue of origin and the type of senescence inducer that could be putatively translated to a distinct impact on tissue homeostasis.


Assuntos
Senescência Celular , Metilação de DNA , Humanos , Células Cultivadas , Senescência Celular/genética , Metilação de DNA/genética , Epigênese Genética , Fibroblastos/metabolismo
9.
Sci Rep ; 12(1): 16595, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198716

RESUMO

The ability to detect and characterize bacteria within a biological sample is crucial for the monitoring of infections and epidemics, as well as for the study of human health and its relationship with commensal microorganisms. To this aim, a commonly used technique is the 16S rRNA gene targeted sequencing. PCR-amplified 16S sequences derived from the sample of interest are usually clustered into the so-called Operational Taxonomic Units (OTUs) based on pairwise similarities. Then, representative OTU sequences are compared with reference (human-made) databases to derive their phylogeny and taxonomic classification. Here, we propose a new reference-free approach to define the phylogenetic distance between bacteria based on protein domains, which are the evolving units of proteins. We extract the protein domain profiles of 3368 bacterial genomes and we use an ecological approach to model their Relative Species Abundance distribution. Based on the model parameters, we then derive a new measurement of phylogenetic distance. Finally, we show that such model-based distance is capable of detecting differences between bacteria in cases in which the 16S rRNA-based method fails, providing a possibly complementary approach , which is particularly promising for the analysis of bacterial populations measured by shotgun sequencing.


Assuntos
Bactérias , Bactérias/genética , Humanos , Filogenia , Domínios Proteicos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
10.
J Clin Oncol ; 40(29): 3406-3418, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35605179

RESUMO

PURPOSE: Patients with newly diagnosed multiple myeloma (NDMM) show heterogeneous outcomes, and approximately 60% of them are at intermediate-risk according to the Revised International Staging system (R-ISS), the standard-of-care risk stratification model. Moreover, chromosome 1q gain/amplification (1q+) recently proved to be a poor prognostic factor. In this study, we revised the R-ISS by analyzing the additive value of each single risk feature, including 1q+. PATIENTS AND METHODS: The European Myeloma Network, within the HARMONY project, collected individual data from 10,843 patients with NDMM enrolled in 16 clinical trials. An additive scoring system on the basis of top features predicting progression-free survival (PFS) and overall survival (OS) was developed and validated. RESULTS: In the training set (N = 7,072), at a median follow-up of 75 months, ISS, del(17p), lactate dehydrogenase, t(4;14), and 1q+ had the highest impact on PFS and OS. These variables were all simultaneously present in 2,226 patients. A value was assigned to each risk feature according to their OS impact (ISS-III 1.5, ISS-II 1, del(17p) 1, high lactate dehydrogenase 1, and 1q+ 0.5 points). Patients were stratified into four risk groups according to the total additive score: low (Second Revision of the International Staging System [R2-ISS]-I, 19.2%, 0 points), low-intermediate (II, 30.8%, 0.5-1 points), intermediate-high (III, 41.2%, 1.5-2.5 points), high (IV, 8.8%, 3-5 points). Median OS was not reached versus 109.2 versus 68.5 versus 37.9 months, and median PFS was 68 versus 45.5 versus 30.2 versus 19.9 months, respectively. The score was validated in an independent validation set (N = 3,771, of whom 1,214 were with complete data to calculate R2-ISS) maintaining its prognostic value. CONCLUSION: The R2-ISS is a simple prognostic staging system allowing a better stratification of patients with intermediate-risk NDMM. The additive nature of this score fosters its future implementation with new prognostic variables.


Assuntos
Mieloma Múltiplo , Aberrações Cromossômicas , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Fatores de Risco
11.
Cancers (Basel) ; 14(9)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35565360

RESUMO

BACKGROUND: Rectal cancer is a malignant neoplasm of the large intestine resulting from the uncontrolled proliferation of the rectal tract. Predicting the pathologic response of neoadjuvant chemoradiotherapy at an MRI primary staging scan in patients affected by locally advanced rectal cancer (LARC) could lead to significant improvement in the survival and quality of life of the patients. In this study, the possibility of automatizing this estimation from a primary staging MRI scan, using a fully automated artificial intelligence-based model for the segmentation and consequent characterization of the tumor areas using radiomic features was evaluated. The TRG score was used to evaluate the clinical outcome. METHODS: Forty-three patients under treatment in the IRCCS Sant'Orsola-Malpighi Polyclinic were retrospectively selected for the study; a U-Net model was trained for the automated segmentation of the tumor areas; the radiomic features were collected and used to predict the tumor regression grade (TRG) score. RESULTS: The segmentation of tumor areas outperformed the state-of-the-art results in terms of the Dice score coefficient or was comparable to them but with the advantage of considering mucinous cases. Analysis of the radiomic features extracted from the lesion areas allowed us to predict the TRG score, with the results agreeing with the state-of-the-art results. CONCLUSIONS: The results obtained regarding TRG prediction using the proposed fully automated pipeline prove its possible usage as a viable decision support system for radiologists in clinical practice.

12.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614147

RESUMO

Appropriate wound management shortens the healing times and reduces the management costs, benefiting the patient in physical terms and potentially reducing the healthcare system's economic burden. Among the instrumental measurement methods, the image analysis of a wound area is becoming one of the cornerstones of chronic ulcer management. Our study aim is to develop a solid AI method based on a convolutional neural network to segment the wounds efficiently to make the work of the physician more efficient, and subsequently, to lay the foundations for the further development of more in-depth analyses of ulcer characteristics. In this work, we introduce a fully automated model for identifying and segmenting wound areas which can completely automatize the clinical wound severity assessment starting from images acquired from smartphones. This method is based on an active semi-supervised learning training of a convolutional neural network model. In our work, we tested the robustness of our method against a wide range of natural images acquired in different light conditions and image expositions. We collected the images using an ad hoc developed app and saved them in a database which we then used for AI training. We then tested different CNN architectures to develop a balanced model, which we finally validated with a public dataset. We used a dataset of images acquired during clinical practice and built an annotated wound image dataset consisting of 1564 ulcer images from 474 patients. Only a small part of this large amount of data was manually annotated by experts (ground truth). A multi-step, active, semi-supervised training procedure was applied to improve the segmentation performances of the model. The developed training strategy mimics a continuous learning approach and provides a viable alternative for further medical applications. We tested the efficiency of our model against other public datasets, proving its robustness. The efficiency of the transfer learning showed that after less than 50 epochs, the model achieved a stable DSC that was greater than 0.95. The proposed active semi-supervised learning strategy could allow us to obtain an efficient segmentation method, thereby facilitating the work of the clinician by reducing their working times to achieve the measurements. Finally, the robustness of our pipeline confirms its possible usage in clinical practice as a reliable decision support system for clinicians.


Assuntos
Redes Neurais de Computação , Úlcera , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina Supervisionado
14.
BMC Bioinformatics ; 22(1): 60, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563206

RESUMO

BACKGROUND: Current high-throughput technologies-i.e. whole genome sequencing, RNA-Seq, ChIP-Seq, etc.-generate huge amounts of data and their usage gets more widespread with each passing year. Complex analysis pipelines involving several computationally-intensive steps have to be applied on an increasing number of samples. Workflow management systems allow parallelization and a more efficient usage of computational power. Nevertheless, this mostly happens by assigning the available cores to a single or few samples' pipeline at a time. We refer to this approach as naive parallel strategy (NPS). Here, we discuss an alternative approach, which we refer to as concurrent execution strategy (CES), which equally distributes the available processors across every sample's pipeline. RESULTS: Theoretically, we show that the CES results, under loose conditions, in a substantial speedup, with an ideal gain range spanning from 1 to the number of samples. Also, we observe that the CES yields even faster executions since parallelly computable tasks scale sub-linearly. Practically, we tested both strategies on a whole exome sequencing pipeline applied to three publicly available matched tumour-normal sample pairs of gastrointestinal stromal tumour. The CES achieved speedups in latency up to 2-2.4 compared to the NPS. CONCLUSIONS: Our results hint that if resources distribution is further tailored to fit specific situations, an even greater gain in performance of multiple samples pipelines execution could be achieved. For this to be feasible, a benchmarking of the tools included in the pipeline would be necessary. It is our opinion these benchmarks should be consistently performed by the tools' developers. Finally, these results suggest that concurrent strategies might also lead to energy and cost savings by making feasible the usage of low power machine clusters.


Assuntos
Biologia Computacional , Sequenciamento do Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Software , Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional/métodos , Sequenciamento do Exoma/normas , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA