Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(9): e10408, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693937

RESUMO

Carotenoid pigments are the basis for much red, orange, and yellow coloration in nature and central to visual signaling. However, as pigment concentration increases, carotenoid signals not only darken and become more saturated but they also redshift; for example, orange pigments can look red at higher concentration. This occurs because light experiences exponential attenuation, and carotenoid-based signals have spectrally asymmetric reflectance in the visible range. Adding pigment disproportionately affects the high-absorbance regions of the reflectance spectra, which redshifts the perceived hue. This carotenoid redshift is substantial and perceivable by animal observers. In addition, beyond pigment concentration, anything that increases the path length of light through pigment causes this redshift (including optical nano- and microstructures). For example, male Ramphocelus tanagers appear redder than females, despite the same population and concentration of carotenoids, due to microstructures that enhance light-pigment interaction. This mechanism of carotenoid redshift has sensory and evolutionary consequences for honest signaling in that structures that redshift carotenoid ornaments may decrease signal honesty. More generally, nearly all colorful signals vary in hue, saturation, and brightness as light-pigment interactions change, due to spectrally asymmetrical reflectance within the visible range of the relevant species. Therefore, the three attributes of color need to be considered together in studies of honest visual signaling.

2.
Sci Rep ; 11(1): 8582, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883641

RESUMO

Brilliantly-colored birds are a model system for research into evolution and sexual selection. Red, orange, and yellow carotenoid-colored plumages have been considered honest signals of condition; however, sex differences in feather pigments and microstructures are not well understood. Here, we show that microstructures, rather than carotenoid pigments, seem to be a major driver of male-female color differences in the social, sexually-dimorphic tanager genus Ramphocelus. We comprehensively quantified feather (i) color (using spectrophotometry), (ii) pigments (using liquid chromatography-mass spectrometry (LC-MS)), and (iii) microstructures (using scanning electron microscopy (SEM) and finite-difference time-domain (FDTD) optical modeling). Males have significantly more saturated color patches than females. However, our exploratory analysis of pigments suggested that males and females have concordant carotenoid pigment profiles across all species (MCMCglmm model, female:male ratio = 0.95). Male, but not female, feathers have elaborate microstructures which amplify color appearance. Oblong, expanded feather barbs in males enhance color saturation (for the same amount of pigment) by increasing the transmission of optical power through the feather. Dihedral barbules (vertically-angled, strap-shaped barbules) in males reduce total reflectance to generate "super black" and "velvet red" plumage. Melanin in females explains some, but not all, of the male-female plumage differences. Our results suggest that a widely cited index of honesty, carotenoid pigments, cannot fully explain male appearance. We propose that males are selected to evolve amplifiers-in this case, microstructures that enhance appearance-that are not necessarily themselves linked to quality.


Assuntos
Carotenoides/metabolismo , Plumas/anatomia & histologia , Preferência de Acasalamento Animal , Passeriformes/anatomia & histologia , Animais , Carotenoides/análise , Cor , Plumas/química , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA