Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 54(9): 4371-6, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25870890

RESUMO

The novel iridate Ba8Al2IrO14 was prepared as single crystals by self-flux method, thereby providing a rare example of an all-Ir(VI) compound that can be synthesized under ambient pressure conditions. The preparation of all-Ir(6+) iridate without using traditional high-pressure techniques has to our knowledge previously only been reported in Nd2K2IrO7 and Sm2K2IrO7. The monoclinic crystal structure (space group C2/m, No.12) is stable down to 90 K and contains layers of IrO6 octahedra separated by Ba and AlO4 tetrahedra. The material exhibits insulating behavior with a narrow band gap of ∼0.6 eV. The positive Seebeck coefficient indicates hole-like dominant charge carriers. Susceptibility measurement shows antiferromagnetic coupling with no order down to 2 K.

2.
Science ; 336(6087): 1416-9, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22700923

RESUMO

Magnetism has been predicted to occur in systems in which dipolar interactions dominate exchange. We present neutron scattering, specific heat, and magnetic susceptibility data for LiErF(4), establishing it as a model dipolar-coupled antiferromagnet with planar spin-anisotropy and a quantum phase transition in applied field H(c|| = 4.0 ± 0.1 kilo-oersteds. We discovered non-mean-field critical scaling for the classical phase transition at the antiferromagnetic transition temperature that is consistent with the two-dimensional XY/h(4) universality class; in accord with this, the quantum phase transition at H(c) exhibits three-dimensional classical behavior. The effective dimensional reduction may be a consequence of the intrinsic frustrated nature of the dipolar interaction, which strengthens the role of fluctuations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA