Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39365713

RESUMO

Ultrasound open scanners have recently boosted the development and validation of novel imaging techniques. They are usually split into hardware- or software-oriented systems, depending on whether they process the echo data using embedded FPGAs/DSPs or a GPU on a host PC. The goal of this work was to realize a high-performance heterogeneous open scanner capable of leveraging the strengths of both hardware and software-oriented systems. The elaboration power of the 256-channel ultrasound advanced open platform (ULA-OP 256) was further enhanced by embedding a compact co-processing GPU system-on-module (SoM). By carefully avoiding latencies and overheads through low-level optimization work, an efficient PCIe communication interface was established between the GPU and the processing devices onboard the ULA-OP 256. As a proof of concept of the enhanced system, the high frame rate color flow mapping technique was implemented on the GPU SoM and tested. Compared to a previous DSP-based implementation, higher real-time frame rates were achieved together with unprecedented flexibility in setting crucial parameters such as the ensemble length (EL). For example, by setting EL=64 and a continuous-time high-pass filter, the flow was investigated with high temporal and spatial resolution in the femoral vein bifurcation (frame rate = 1.1 kHz) and carotid artery bulb (4.3 kHz), highlighting the flow disturbances due to valve aperture and secondary velocity components, respectively. The results of this work promote the development of other computational-expensive processing algorithms in real-time and may inspire the next generation of ultrasound high-performance heterogeneous scanners.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33444135

RESUMO

2-D sparse arrays may push the development of low-cost 3-D systems, not needing to control thousands of elements by expensive application-specific integrated circuits (ASICs). However, there is still some concern about their suitability in applications, such as Doppler investigation, which inherently involve poor signal-to-noise ratios (SNRs). In this article, a novel real-time 3-D pulsed-wave (PW) Doppler system, based on a 256-element 2-D spiral array, is presented. Coded transmission (TX) and matched filtering were implemented to improve the system SNR. Standard sonograms as well as multigate spectral Doppler (MSD) profiles, along lines that can be arbitrarily located in different planes, are presented. The performance of the system was assessed quantitatively on experimental data obtained from a straight tube flow phantom. An SNR increase of 11.4 dB was measured by transmitting linear chirps instead of standard sinusoidal bursts. For a qualitative assessment of the system performance in more realistic conditions, an anthropomorphic phantom of the carotid arteries was used. Finally, real-time B-mode and MSD images were obtained from healthy volunteers.


Assuntos
Artérias Carótidas , Ultrassonografia Doppler , Artérias Carótidas/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído , Ultrassonografia
3.
Artigo em Inglês | MEDLINE | ID: mdl-32813652

RESUMO

The recent development of high-frame-rate (HFR) imaging/Doppler methods based on the transmission of plane or diverging waves has proposed new challenges to echographic data management and display. Due to the huge amount of data that need to be processed at very high speed, the pulse repetition frequency (PRF) is typically limited to hundreds hertz or few kilohertz. In Doppler applications, a PRF limitation may result unacceptable since it inherently translates to a corresponding limitation in the maximum detectable velocity. In this article, the ULA-OP 256 implementation of a novel ultrasound modality, called virtual real-time (VRT), is described. First, for a given HFR RT modality, the scanner displays the processed results while saving channel data into an internal buffer. Then, ULA-OP 256 switches to VRT mode, according to which the raw data stored in the buffer are immediately reprocessed by the same hardware used in RT. In the two phases, the ULA-OP 256 calculation power can be differently distributed to increase the acquisition frame rate or the quality of processing results. VRT was here used to extend the PRF limit in a multiline vector Doppler (MLVD) application. In RT, the PRF was maximized at the expense of the display quality; in VRT, data were reprocessed at a lower rate in a high-quality display format, which provides more detailed flow information. Experiments are reported in which the MLVD technique is shown capable of working at 16-kHz PRF, so that flow jet velocities higher up to 3 m/s can be detected.

4.
Artigo em Inglês | MEDLINE | ID: mdl-30207953

RESUMO

Cardiovascular diseases, the leading cause of death in the world, are often associated with the dysfunction of the left ventricle. Even if, in clinical practice, the myocardial function is often assessed through visual wall motion scoring on B-mode images, quantitative techniques have been introduced, e.g., ultrasound tissue Doppler imaging (TDI). However, this technique suffers from the limited frame rate of currently available imaging techniques that needs to be balanced with the field of view. High-frame-rate (HFR) cardiac imaging has been recently tested off-line by simultaneously transmitting multiple focused beams into different directions and acquiring raw channel data into a PC. Several image lines were then reconstructed from the echoes of each transmission (TX) event. The same approach has been used to increase the TDI frame rate without restricting the field of view. This paper demonstrates the real-time feasibility of multiline TX and acquisition methods for both HFR cardiac B-mode and TDI. These approaches have been implemented on the ULA-OP 256 research scanner, by taking care that the related resources were optimally exploited for these new applications. The obtainable performance in terms of image quality and frame rate has also been investigated. Experiments performed with a 128-element phased array probe show, for the first time, that real-time B-mode imaging is feasible at up to 1150 Hz without significant reduction in image quality or field of view. The implementation of a real-time TDI algorithm allowed obtaining TDI images with a frame rate of 288 Hz for a 90°-wide field of view. Finally, in vivo examples demonstrate the feasibility and the suitability of the method in clinical studies.


Assuntos
Ecocardiografia Doppler/métodos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Ventrículos do Coração/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade
5.
Artigo em Inglês | MEDLINE | ID: mdl-28742032

RESUMO

High frame rate (HFR) imaging methods based on the transmission of defocused or plane waves rather than focused beams are increasingly popular. However, the production of HFR images poses severe requirements both in the transmission and the reception sections of ultrasound scanners. In particular, major technical difficulties arise if the images must be continuously produced in real-time, i.e., without any acquisition interruption nor loss of data. This paper presents the implementation of the real-time HFR-compounded imaging application in the ULA-OP 256 research platform. The beamformer sustains an average output sample rate of 470 MSPS. This allows continuously producing coherently compounded images, each of 64 lines by 1280 depths (here corresponding to 15.7 mm width and 45 mm depth, respectively), at frame rates up to 5.3 kHz. Imaging tests addressed to evaluate the achievable speed and quality performance were conducted on phantom. Results obtained by real-time compounding frames obtained with different numbers of steering angles between +7.5° and -7.5° are presented.

6.
Artigo em Inglês | MEDLINE | ID: mdl-27249828

RESUMO

Transmission of coded pulses and matched receive filtering can improve the ultrasound imaging penetration depth while preserving the axial resolution. This paper shows that the pulse compression technique may be integrated in a low-cost scanner to be profitably used also in spectral Doppler investigations. By operating on beamformed, demodulated, and down-sampled data in the frequency domain, a single digital signal processor is proved sufficient to perform both pulse compression and multigate spectral Doppler algorithms in real time. Simulations, phantom, and in vivo experiments demonstrate that the transmission of (2.5 or [Formula: see text] long) linear frequency-modulated chirps with bandwidths over the range 1.6-5.4 MHz, rather than of corresponding sine-burst pulses, provides signal-to-noise ratio (SNR) improvements very close to theory. Even in the presence of selective tissue attenuation, SNR gains up to 11 and 13.3 dB have been obtained for the short and the longer chirp, respectively. This may be important in clinical Doppler applications where the needed penetration depth is not achieved with sufficient SNR unless very long bursts are transmitted.


Assuntos
Simulação por Computador , Ultrassonografia Doppler/métodos , Artérias Carótidas/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Ultrassonografia Doppler/instrumentação
7.
Artigo em Inglês | MEDLINE | ID: mdl-27187952

RESUMO

Open scanners offer an increasing support to the ultrasound researchers who are involved in the experimental test of novel methods. Each system presents specific performance in terms of number of channels, flexibility, processing power, data storage capability, and overall dimensions. This paper reports the design criteria and hardware/software implementation details of a new 256-channel ultrasound advanced open platform. This system is organized in a modular architecture, including multiple front-end boards, interconnected by a high-speed (80 Gb/s) ring, capable of finely controlling all transmit (TX) and receive (RX) signals. High flexibility and processing power (equivalent to 2500 GFLOP) are guaranteed by the possibility of individually programming multiple digital signal processors and field programmable gate arrays. Eighty GB of on-board memory are available for the storage of prebeamforming, postbeamforming, and baseband data. The use of latest generation devices allowed to integrate all needed electronics in a small size ( 34 cm ×30 cm ×26 cm). The system implements a multiline beamformer that allows obtaining images of 96 lines by 2048 depths at a frame rate of 720 Hz (expandable to 3000 Hz). The multiline beamforming capability is also exploited to implement a real-time vector Doppler scheme in which a single TX and two independent RX apertures are simultaneously used to maintain the analysis over a full pulse repetition frequency range.

8.
Artigo em Inglês | MEDLINE | ID: mdl-22828833

RESUMO

The availability of programmable and reconfigurable ultrasound (US) research platforms may have a considerable impact on the advancement of ultrasound systems technology; indeed, they allow novel transmission strategies or challenging processing methods to be tested and experimentally refined. In this paper, the ULtrasound Advanced Open Platform (ULA-OP), recently developed in our University laboratory, is shown to be a flexible tool that can be easily adapted to a wide range of applications. Five nonstandard working modalities are illustrated. Vector Doppler and quasi-static elastography applications emphasize the real-time potential and versatility of the system. Flow-mediated dilation, pulse compression, and high-frame-rate imaging highlight the flexibility of data access at different points in the reception chain. For each modality, the role played by the onboard programmable devices is discussed. Experimental results are reported, indicating the relative performance of the system for each application.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Ultrassonografia/instrumentação , Interface Usuário-Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Ultrasound Med Biol ; 36(3): 488-96, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20133036

RESUMO

Two-dimensional angle-independent blood velocity estimates typically combine the Doppler frequencies independently measured by two ultrasound beams with known interbeam angle. A different dual-beam approach was recently introduced in which one (reference) beam is used to identify the flow direction, and the second (measuring) beam directly estimates the true flow velocity at known beam-flow angle. In this paper, we present a procedure to automatically steer the two beams along optimal orientations so that the velocity magnitude can be measured. The operator only takes care of locating the Doppler sample volume in the region of interest and, through the extraction of appropriate parameters from the Doppler spectrum, the reference beam is automatically steered toward right orientation to the flow. The velocity magnitude is thus estimated by the measuring beam, which is automatically oriented with respect to the (known) flow direction at a suitable Doppler angle. The implementation of the new angle tracking method in the ULtrasound Advanced Open Platform (ULA-OP), connected to a linear array transducer, is reported. A series of experiments shows that the proposed method rapidly locks the flow direction and measures the velocity magnitude with low variability for a large range of initial probe orientations. In vitro tests conducted in both steady and pulsatile flow conditions produced coefficients of variability (CV) below 2.3% and 8.3%, respectively. The peak systolic velocities have also been measured in the common carotid arteries of 13 volunteers, with mean CV of 7%.


Assuntos
Artéria Carótida Primitiva/diagnóstico por imagem , Ultrassonografia Doppler , Adulto , Automação , Velocidade do Fluxo Sanguíneo , Técnicas de Diagnóstico Cardiovascular/instrumentação , Humanos , Pessoa de Meia-Idade , Padrões de Referência , Adulto Jovem
10.
Artigo em Inglês | MEDLINE | ID: mdl-19942508

RESUMO

The experimental test of novel ultrasound (US) investigation methods can be made difficult by the lack of flexibility of commercial US machines. In the best options, these only provide beamformed radiofrequency or demodulated echo-signals for acquisition by an external PC. More flexibility is achieved in high-level research platforms, but these are typically characterized by high cost and large size. This paper presents a powerful but portable US system, specifically developed for research purposes. The system design has been based on high-level commercial integrated circuits to obtain the maximum flexibility and wide data access with minimum of electronics. Preliminary applications involving nonstandard imaging transmit/receive strategies and simultaneous B-mode and multigate spectral Doppler mode are discussed.


Assuntos
Processamento de Sinais Assistido por Computador/instrumentação , Ultrassonografia , Artérias Carótidas/diagnóstico por imagem , Compressão de Dados , Humanos , Software , Ultrassonografia/instrumentação
11.
Artigo em Inglês | MEDLINE | ID: mdl-19162826

RESUMO

This paper addresses the important issue of voice monitoring throughout the day under a clinical perspective. This problem is of great concern, for rehabilitation and from the assistive technology point of view. A prototype for a new portable device is proposed, implementing basic voice quality indexes (fundamental frequency F0, jitter, relative average perturbation RAP, noise) by means of robust high-resolution techniques. The device is contact-less, as the transducer is a small microphone included in the device. A feedback for patients outside the clinic is provided, given by a led/audio unit that advices the patient for any abnormal vocal emission, to help patients with carryover of therapy goals outside the clinical environment. The device will collect audio recordings to be submitted to a PC for further analysis, to be performed off-line. Such device for self-diagnosis and vocal rehabilitation could give a valid support, both to clinicians and patients.


Assuntos
Diagnóstico por Computador/instrumentação , Monitorização Ambulatorial/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Medida da Produção da Fala/instrumentação , Qualidade da Voz/fisiologia , Treinamento da Voz , Algoritmos , Diagnóstico por Computador/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Miniaturização , Monitorização Ambulatorial/métodos , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Medida da Produção da Fala/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA