Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4665, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537157

RESUMO

Oxygen is a key signalling component of plant biology, and whilst an oxygen-sensing mechanism was previously described in Arabidopsis thaliana, key features of the associated PLANT CYSTEINE OXIDASE (PCO) N-degron pathway and Group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factor substrates remain untested or unknown. We demonstrate that ERFVIIs show non-autonomous activation of root hypoxia tolerance and are essential for root development and survival under oxygen limiting conditions in soil. We determine the combined effects of ERFVIIs in controlling gene expression and define genetic and environmental components required for proteasome-dependent oxygen-regulated stability of ERFVIIs through the PCO N-degron pathway. Using a plant extract, unexpected amino-terminal cysteine sulphonic acid oxidation level of ERFVIIs was observed, suggesting a requirement for additional enzymatic activity within the pathway. Our results provide a holistic understanding of the properties, functions and readouts of this oxygen-sensing mechanism defined through its role in modulating ERFVII stability.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Direct ; 7(3): e488, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36993903

RESUMO

Limited aeration that is caused by tissue geometry, diffusion barriers, high elevation, or a flooding event poses major challenges to plants and is often, but not exclusively, associated with low oxygen. These processes span a broad interest in the research community ranging from whole plant and crop responses, post-harvest physiology, plant morphology and anatomy, fermentative metabolism, plant developmental processes, oxygen sensing by ERF-VIIs, gene expression profiles, the gaseous hormone ethylene, and O2 dynamics at cellular resolution. The International Society for Plant Anaerobiosis (ISPA) gathers researchers from all over the world contributing to understand the causes, responses, and consequences of limited aeration in plants. During the 14th ISPA meeting, major research progress was related to the evolution of O2 sensing mechanisms and the intricate network that balances low O2 signaling. Here, the work moved beyond flooding stress and emphasized novel underexplored roles of low O2 and limited aeration in altitude adaptation, fruit development and storage, and the vegetative development of growth apices. Regarding tolerance towards flooding, the meeting stressed the relevance and regulation of developmental plasticity, aerenchyma, and barrier formation to improve internal aeration. Additional newly explored flood tolerance traits concerned resource balance, senescence, and the exploration of natural genetic variation for novel tolerance loci. In this report, we summarize and synthesize the major progress and future challenges for low O2 and aeration research presented at the conference.

3.
Proc Natl Acad Sci U S A ; 117(37): 23140-23147, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868422

RESUMO

In higher plants, molecular responses to exogenous hypoxia are driven by group VII ethylene response factors (ERF-VIIs). These transcriptional regulators accumulate in the nucleus under hypoxia to activate anaerobic genes but are destabilized in normoxic conditions through the action of oxygen-sensing plant cysteine oxidases (PCOs). The PCOs catalyze the reaction of oxygen with the conserved N-terminal cysteine of ERF-VIIs to form cysteine sulfinic acid, triggering degradation via the Cys/Arg branch of the N-degron pathway. The PCOs are therefore a vital component of the plant oxygen signaling system, connecting environmental stimulus with cellular and physiological response. Rational manipulation of PCO activity could regulate ERF-VII levels and improve flood tolerance, but requires detailed structural information. We report crystal structures of the constitutively expressed PCO4 and PCO5 from Arabidopsis thaliana to 1.24 and 1.91 Å resolution, respectively. The structures reveal that the PCOs comprise a cupin-like scaffold, which supports a central metal cofactor coordinated by three histidines. While this overall structure is consistent with other thiol dioxygenases, closer inspection of the active site indicates that other catalytic features are not conserved, suggesting that the PCOs may use divergent mechanisms to oxidize their substrates. Conservative substitution of two active site residues had dramatic effects on PCO4 function both in vitro and in vivo, through yeast and plant complementation assays. Collectively, our data identify key structural elements that are required for PCO activity and provide a platform for engineering crops with improved hypoxia tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oxigênio/metabolismo , Cisteína Dioxigenase/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Oxirredução , Transdução de Sinais/fisiologia , Fatores de Transcrição
4.
J Mol Biol ; 431(15): 2810-2820, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31125566

RESUMO

The ability to perceive oxygen levels is crucial to many organisms because it allows discerning environments compatible with aerobic or anaerobic metabolism, as well as enabling rapid switch between these two energy strategies. Organisms from different taxa dedicate distinct mechanisms to associate oxygen fluctuations with biological responses. Following from this observation, we speculated that orthogonal oxygen sensing devices can be created by transfer of essential modules from one species to another in which they are not conserved. We expressed plant cysteine oxidase (PCOs) enzymes in Saccharomyces cerevisiae, to confer oxygen-conditional degradability to a bioluminescent protein tagged with the Cys-exposing N-degron typical of plant ERF-VII factors. Co-translation of a second luciferase protein, not subjected to oxygen-dependent proteolysis, made the resulting Double Luciferase Oxygen Reporter (DLOR) ratiometric. We show that DLOR acts as a proxy for oxygen dynamics in yeast cultures. Moreover, since DLOR activity was enabled by the PCO sensors, we employed this device to disclose some of their properties, such as the dispensability of nitric oxide for N-terminal cysteine oxidation and the individual performance of Arabidopsis PCO isoforms in vivo. In the future, we propose the synthetic DLOR device as a convenient, eukaryotic cell-based tool to easily screen substrates and inhibitors of cysteine oxidase enzymes in vivo. Replacement of the luminescent proteins with fluorescent proteins will further turn our system into a visual reporter for oxygen dynamics in living cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cisteína Dioxigenase/metabolismo , Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína Dioxigenase/genética , Expressão Gênica , Medições Luminescentes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Proteólise , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA