Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Mov Disord ; 38(12): 2269-2281, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37964373

RESUMO

BACKGROUND: Increasing evidence points to a pathophysiological role for the cerebellum in Parkinson's disease (PD). However, regional cerebellar changes associated with motor and non-motor functioning remain to be elucidated. OBJECTIVE: To quantify cross-sectional regional cerebellar lobule volumes using three dimensional T1-weighted anatomical brain magnetic resonance imaging from the global ENIGMA-PD working group. METHODS: Cerebellar parcellation was performed using a deep learning-based approach from 2487 people with PD and 1212 age and sex-matched controls across 22 sites. Linear mixed effects models compared total and regional cerebellar volume in people with PD at each Hoehn and Yahr (HY) disease stage, to an age- and sex- matched control group. Associations with motor symptom severity and Montreal Cognitive Assessment scores were investigated. RESULTS: Overall, people with PD had a regionally smaller posterior lobe (dmax = -0.15). HY stage-specific analyses revealed a larger anterior lobule V bilaterally (dmax = 0.28) in people with PD in HY stage 1 compared to controls. In contrast, smaller bilateral lobule VII volume in the posterior lobe was observed in HY stages 3, 4, and 5 (dmax = -0.76), which was incrementally lower with higher disease stage. Within PD, cognitively impaired individuals had lower total cerebellar volume compared to cognitively normal individuals (d = -0.17). CONCLUSIONS: We provide evidence of a dissociation between anterior "motor" lobe and posterior "non-motor" lobe cerebellar regions in PD. Whereas less severe stages of the disease are associated with larger motor lobe regions, more severe stages of the disease are marked by smaller non-motor regions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Estudos Transversais , Imageamento por Ressonância Magnética , Cerebelo , Encéfalo
2.
Front Behav Neurosci ; 17: 1215625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600760

RESUMO

The nucleus reuniens (RE) is situated in the midline thalamus and provides a key link between the hippocampus and prefrontal cortex. This anatomical relationship positions the Re as an ideal candidate to facilitate memory consolidation. However, there is no evidence that this role extends beyond spatial memory and contextual fear memory, which are both strongly associated with hippocampal function. We, therefore, trained intact male Long-Evans rats on an odor-trace-object paired-associate task where the explicit 10-s delay between paired items renders the task sensitive to hippocampal function. Neurons in the RE showed significantly increased activation of the immediate early gene (Zif268) when rats were re-tested for previous non-spatial memory 25 days after acquisition training, compared to a group tested at 5-days post-acquisition, as well as a control group tested 25 days after acquisition but with a new pair of non-spatial stimuli, and home cage controls. The remote recall group also showed relatively augmented IEG expression in the superficial layers of the medial PFC (anterior cingulate cortex and prelimbic cortex). These findings support the conclusion that the RE is preferentially engaged during remote recall in this non-spatial task and thus has a role beyond spatial memory and contextual fear memory.

3.
Mov Disord Clin Pract ; 10(6): 956-966, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37332649

RESUMO

Background: Parkinson's disease frequently causes communication impairments, but knowledge about the occurrence of new-onset stuttering is limited. Objectives: To determine the presence of acquired neurogenic stuttering and its relationship with cognitive and motor functioning in individuals with Parkinson's disease. Method: Conversation, picture description, and reading samples were collected from 100 people with Parkinson's disease and 25 controls to identify the presence of stuttered disfluencies (SD) and their association with neuropsychological test performance and motor function. Results: Participants with Parkinson's disease presented with twice as many stuttered disfluencies during conversation (2.2% ± 1.8%SD) compared to control participants (1.2% ± 1.2%SD; P < 0.01). 21% of people with Parkinson's disease (n = 20/94) met the diagnostic criterion for stuttering, compared with 1/25 controls. Stuttered disfluencies also differed significantly across speech tasks, with more disfluencies during conversation compared to reading (P < 0.01). Stuttered disfluencies in those with Parkinson's disease were associated with longer time since disease onset (P < 0.01), higher levodopa equivalent dosage (P < 0.01), and lower cognitive (P < 0.01) and motor scores (P < 0.01). Conclusion: One in five participants with Parkinson's disease presented with acquired neurogenic stuttering, suggesting that speech disfluency assessment, monitoring and intervention should be part of standard care. Conversation was the most informative task for identifying stuttered disfluencies. The frequency of stuttered disfluencies was higher in participants with worse motor functioning, and lower cognitive functioning. This challenges previous suggestions that the development of stuttered disfluencies in Parkinson's disease has purely a motoric basis.

4.
Brain ; 146(7): 2739-2752, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37019846

RESUMO

Work in animal and human neuroscience has identified neural regions forming a network involved in the production of motivated, goal-directed behaviour. In particular, the nucleus accumbens and anterior cingulate cortex are recognized as key network nodes underlying decisions of whether to exert effort for reward, to drive behaviour. Previous work has convincingly shown that this cognitive mechanism, known as effort-based decision making, is altered in people with Parkinson's disease with a syndrome of reduced goal-directed behaviour-apathy. Building on this work, we investigated whether the neural regions implementing effort-based decision-making were associated with apathy in Parkinson's disease, and more importantly, whether changes to these regions were evident prior to apathy development. We performed a large, multimodal neuroimaging analysis in a cohort of people with Parkinson's disease (n = 199) with and without apathy at baseline. All participants had ∼2-year follow-up apathy scores, enabling examination of brain structure and function specifically in those with normal motivation who converted to apathy by ∼2-year follow-up. In addition, of the people with normal motivation, a subset (n = 56) had follow-up neuroimaging data, allowing for examination of the 'rate of change' in key nodes over time in those who did, and did not, convert to apathy. Healthy control (n = 54) data were also included to aid interpretation of findings. Functional connectivity between the nucleus accumbens and dorsal anterior cingulate cortex was higher in people with normal motivation who later converted to apathy compared to those who did not, whereas no structural differences were evident between these groups. In contrast, grey matter volume in these regions was reduced in the group with existing apathy. Furthermore, of those with normal motivation who had undergone longitudinal neuroimaging, converters to apathy showed a higher rate of change in grey matter volume within the nucleus accumbens. Overall, we show that changes in functional connectivity between nucleus accumbens and anterior cingulate cortex precedes apathy in people with Parkinson's disease, with conversion to apathy associated with higher rate of grey matter volume loss in nucleus accumbens, despite no baseline differences. These findings significantly add to an accumulating body of transdiagnostic evidence that apathy arises from disruption to key nodes within a network in which normal goal-directed behaviour is instantiated, and raise the possibility of identifying those at risk for developing apathy before overt motivational deficits have arisen.


Assuntos
Apatia , Doença de Parkinson , Humanos , Núcleo Accumbens/diagnóstico por imagem , Encéfalo , Substância Cinzenta
5.
Front Netw Physiol ; 3: 1072815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926542

RESUMO

Fractal geometry is a well-known model for capturing the multi-scaled complexity of many natural objects. By analyzing three-dimensional images of pyramidal neurons in the rat hippocampus CA1 region, we examine how the individual dendrites within the neuron arbor relate to the fractal properties of the arbor as a whole. We find that the dendrites reveal unexpectedly mild fractal characteristics quantified by a low fractal dimension. This is confirmed by comparing two fractal methods-a traditional "coastline" method and a novel method that examines the dendrites' tortuosity across multiple scales. This comparison also allows the dendrites' fractal geometry to be related to more traditional measures of their complexity. In contrast, the arbor's fractal characteristics are quantified by a much higher fractal dimension. Employing distorted neuron models that modify the dendritic patterns, deviations from natural dendrite behavior are found to induce large systematic changes in the arbor's structure and its connectivity within a neural network. We discuss how this sensitivity to dendrite fractality impacts neuron functionality in terms of balancing neuron connectivity with its operating costs. We also consider implications for applications focusing on deviations from natural behavior, including pathological conditions and investigations of neuron interactions with artificial surfaces in human implants.

6.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770687

RESUMO

Insulin-like growth factor-1 (IGF-1) function declines with age and is associated with brain ageing and the progression of age-related neurological conditions. The reversible binding of IGF-1 to IGF binding protein (IGFBP)-3 regulates the amount of bioavailable, functional IGF-1 in circulation. Cyclic glycine-proline (cGP), a metabolite from the binding site of IGF-1, retains its affinity for IGFBP-3 and competes against IGF-1 for IGFBP-3 binding. Thus, cGP and IGFBP-3 collectively regulate the bioavailability of IGF-1. The molar ratio of cGP/IGF-1 represents the amount of bioavailable and functional IGF-1 in circulation. The cGP/IGF-1 molar ratio is low in patients with age-related conditions, including hypertension, stroke, and neurological disorders with cognitive impairment. Stroke patients with a higher cGP/IGF-1 molar ratio have more favourable clinical outcomes. The elderly with more cGP have better memory retention. An increase in the cGP/IGF-1 molar ratio with age is associated with normal cognition, whereas a decrease in this ratio with age is associated with dementia in Parkinson disease. In addition, cGP administration reduces systolic blood pressure, improves memory, and aids in stroke recovery. These clinical and experimental observations demonstrate the role of cGP in regulating IGF-1 function and its potential clinical applications in age-related brain diseases as a plasma biomarker for-and an intervention to improve-IGF-1 function.


Assuntos
Doenças do Sistema Nervoso , Doença de Parkinson , Acidente Vascular Cerebral , Humanos , Idoso , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Relevância Clínica , Acidente Vascular Cerebral/tratamento farmacológico , Encéfalo/metabolismo , Envelhecimento
7.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36712107

RESUMO

Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. These efforts unveil new questions about integrating data arising from distinct sources and instruments. We focus on the most frequently assessed cognitive domain - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated global raw data from 53 studies totaling N = 10,505 individuals. A mega-analysis was conducted using empirical bayes harmonization to remove site effects, followed by linear models adjusting for common covariates. A continuous item response theory (IRT) model estimated each individual's latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance while preserving covariate effects, and our conversion tool is freely available online. This demonstrates that large-scale data sharing and harmonization initiatives can address reproducibility and integration challenges across the behavioral sciences.

8.
Brain ; 146(1): 195-208, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35833836

RESUMO

Besides motor symptoms, many individuals with Parkinson's disease develop cognitive impairment perhaps due to coexisting α-synuclein and Alzheimer's disease pathologies and impaired brain insulin signalling. Discovering biomarkers for cognitive impairment in Parkinson's disease could help clarify the underlying pathogenic processes and improve Parkinson's disease diagnosis and prognosis. This study used plasma samples from 273 participants: 103 Parkinson's disease individuals with normal cognition, 121 Parkinson's disease individuals with cognitive impairment (81 with mild cognitive impairment, 40 with dementia) and 49 age- and sex-matched controls. Plasma extracellular vesicles enriched for neuronal origin were immunocaptured by targeting the L1 cell adhesion molecule, then biomarkers were quantified using immunoassays. α-Synuclein was lower in Parkinson's disease compared to control individuals (P = 0.004) and in cognitively impaired Parkinson's disease individuals compared to Parkinson's disease with normal cognition (P < 0.001) and control (P < 0.001) individuals. Amyloid-ß42 did not differ between groups. Phosphorylated tau (T181) was higher in Parkinson's disease than control individuals (P = 0.003) and in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P < 0.001) and controls (P < 0.001). Total tau was not different between groups. Tyrosine-phosphorylated insulin receptor substrate-1 was lower in Parkinson's disease compared to control individuals (P = 0.03) and in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.02) and controls (P = 0.01), and also decreased with increasing motor symptom severity (P = 0.005); serine312-phosphorylated insulin receptor substrate-1 was not different between groups. Mechanistic target of rapamycin was not different between groups, whereas phosphorylated mechanistic target of rapamycin trended lower in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.05). The ratio of α-synuclein to phosphorylated tau181 was lower in Parkinson's disease compared to controls (P = 0.001), in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P < 0.001) and decreased with increasing motor symptom severity (P < 0.001). The ratio of insulin receptor substrate-1 phosphorylated serine312 to insulin receptor substrate-1 phosphorylated tyrosine was higher in Parkinson's disease compared to control individuals (P = 0.01), in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.02) and increased with increasing motor symptom severity (P = 0.003). α-Synuclein, phosphorylated tau181 and insulin receptor substrate-1 phosphorylated tyrosine contributed in diagnostic classification between groups. These findings suggest that both α-synuclein and tau pathologies and impaired insulin signalling underlie Parkinson's disease with cognitive impairment. Plasma neuronal extracellular vesicles biomarkers may inform cognitive prognosis in Parkinson's disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Insulinas , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , alfa-Sinucleína , Receptor de Insulina , Proteínas tau , Peptídeos beta-Amiloides , Doença de Alzheimer/complicações , Disfunção Cognitiva/complicações , Biomarcadores
9.
Eur J Neurosci ; 56(7): 5014-5032, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985792

RESUMO

Injury or dysfunction in the anterior thalamic nuclei (ATN) may be the key contributory factor in many instances of diencephalic amnesia. Experimental ATN lesions impair spatial memory and temporal discriminations, but there is only limited support for a more general role in non-spatial memory. To extend evidence on the effects of ATN lesions, we examined the acquisition of biconditional associations between odour and object pairings presented in a runway, either with or without a temporal gap between these items. Intact adult male rats acquired both the no-trace and 10-s trace versions of this non-spatial task. Intact rats trained in the trace version showed elevated Zif268 activation in the dorsal CA1 of the hippocampus, suggesting that the temporal component recruited additional neural processing. ATN lesions completely blocked acquisition on both versions of this association-memory task. This deficit was not due to poor inhibition to non-rewarded cues or impaired sensory processing, because rats with ATN lesions were unimpaired in the acquisition of simple odour discriminations and simple object discriminations using similar task demands in the same apparatus. This evidence challenges the view that impairments in arbitrary paired-associate learning after ATN lesions require the use of multimodal spatial stimuli. It suggests that diencephalic amnesia associated with the ATN stems from degraded attention to stimulus-stimulus associations and their representation across a distributed memory system.


Assuntos
Núcleos Anteriores do Tálamo , Amnésia , Animais , Núcleos Anteriores do Tálamo/patologia , Núcleos Anteriores do Tálamo/fisiologia , Sinais (Psicologia) , Hipocampo/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Ratos , Memória Espacial/fisiologia , Núcleos Talâmicos
10.
Front Physiol ; 13: 932598, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812343

RESUMO

Many of nature's fractal objects benefit from the favorable functionality that results from their pattern repetition at multiple scales. Our recent research focused on the importance of fractal scaling in establishing connectivity between neurons. Fractal dimension D A of the neuron arbors was shown to relate to the optimization of competing functional constraints-the ability of dendrites to connect to other neurons versus the costs associated with building the dendrites. Here, we consider whether pathological states of neurons might affect this fractal optimization and if changes in D A might therefore be used as a diagnostic tool in parallel with traditional measures like Sholl analyses. We use confocal microscopy to obtain images of CA1 pyramidal neurons in the coronal plane of the dorsal rat hippocampus and construct 3-dimensional models of the dendritic arbors using Neurolucida software. We examine six rodent groups which vary in brain condition (whether they had lesions in the anterior thalamic nuclei, ATN) and experience (their housing environment and experience in a spatial task). Previously, we showed ATN lesions reduced spine density in hippocampal CA1 neurons, whereas enriched housing increased spine density in both ATN lesion and sham rats. Here, we investigate whether ATN lesions and experience also effect the complexity and connectivity of CA1 dendritic arbors. We show that sham rats exposed to enriched housing and spatial memory training exhibited higher complexity (as measured by D A ) and connectivity compared to other groups. When we categorize the rodent groups into those with or without lesions, we find that both categories achieve an optimal balance of connectivity with respect to material cost. However, the D A value used to achieve this optimization does not change between these two categories, suggesting any morphological differences induced by the lesions are too small to influence the optimization process. Accordingly, we highlight considerations associated with applying our technique to publicly accessible repositories of neuron images with a broader range of pathological conditions.

11.
Phys Med ; 101: 8-17, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35849909

RESUMO

PURPOSE: Individualised predictive models of cognitive decline require disease-monitoring markers that are repeatable. For wide-spread adoption, such markers also need to be reproducible at different locations. This study assessed the repeatability and reproducibility of MRI markers derived from a dementia protocol. METHODS: Six participants were scanned at three different sites with a 3T MRI scanner. The protocol employed: T1-weighted (T1w) imaging, resting state functional MRI (rsfMRI), arterial spin labelling (ASL), diffusion-weighted imaging (DWI), T2-weighted fluid attenuation inversion recovery (FLAIR), T2-weighted (T2w) imaging, and susceptibility weighted imaging (SWI). Participants were scanned repeatedly, up to six times over a maximum period of five years. One participant was also scanned a further three times on sequential days on one scanner. Fifteen derived metrics were computed from the seven different modalities. RESULTS: Reproducibility (coefficient of variation; CoV, across sites) was best for T1w derived grey matter, white matter and hippocampal volume (CoV < 1.5%), compared to rsfMRI and SWI derived metrics (CoV, 19% and 21%). For a given metric, long-term repeatability (CoV across time) was comparable to reproducibility, with short-term repeatability considerably better. CONCLUSIONS: Reproducibility and repeatability were assessed for a suite of markers calculated from a dementia MRI protocol. In general, structural markers were less variable than functional MRI markers. Variability over time on the same scanner was comparable to variability measured across different scanners. Overall, the results support the viability of multi-site longitudinal studies for monitoring cognitive decline.


Assuntos
Demência , Substância Branca , Demência/diagnóstico por imagem , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
12.
Mov Disord Clin Pract ; 9(4): 479-483, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35582313

RESUMO

Background: The criteria for PD-MCI allow the use of global cognitive tests. Their predictive value for conversion from PD-MCI to PDD, especially compared to comprehensive neuropsychological assessment, is unknown. Methods: The MDS PD-MCI Study Group combined four datasets containing global cognitive tests as well as a comprehensive neuropsychological assessment to define PD-MCI (n = 467). Risk for developing PDD was examined using a Cox model. Global cognitive tests were compared to neuropsychological test batteries (Level I&II) in determining risk for PDD. Results: PD-MCI based on a global cognitive test (MMSE or MoCA) increases the hazard for developing PDD (respectively HR = 2.57, P = 0.001; HR = 4.14, P = <0.001). The C-statistics for MMSE (0.72) and MoCA (0.70) were lower than those based on neuropsychological tests (Level I = 0.82; Level II = 0.81). Sensitivity, specificity and diagnostic accuracy balance was best in Level II. Conclusion: MMSE and MoCA predict conversion to PDD. However, Level II neuropsychological assessment seems the preferred assessment for PD-MCI.

13.
Sci Rep ; 11(1): 23325, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857793

RESUMO

Cerebral blood flow (CBF) measured with arterial spin labelling (ASL) magnetic resonance imaging (MRI) reflects cerebral perfusion, related to metabolism, and arterial transit time (ATT), related to vascular health. Our aim was to investigate the spatial coefficient of variation (sCoV) of CBF maps as a surrogate for ATT, in volunteers meeting criteria for subjective cognitive decline (SCD), amnestic mild cognitive impairment (MCI) and probable Alzheimer's dementia (AD). Whole-brain pseudo continuous ASL MRI was performed at 3 T in 122 participants (controls = 20, SCD = 44, MCI = 45 and AD = 13) across three sites in New Zealand. From CBF maps that included all grey matter, sCoV progressively increased across each group with increased cognitive deficit. A similar overall trend was found when examining sCoV solely in the temporal lobe. We conclude that sCoV, a simple to compute imaging metric derived from ASL MRI, is sensitive to varying degrees of cognitive changes and supports the view that vascular health contributes to cognitive decline associated with Alzheimer's disease.


Assuntos
Doença de Alzheimer/fisiopatologia , Circulação Cerebrovascular , Disfunção Cognitiva/patologia , Demência/fisiopatologia , Angiografia por Ressonância Magnética/métodos , Neuroimagem/métodos , Idoso , Estudos de Casos e Controles , Disfunção Cognitiva/epidemiologia , Feminino , Humanos , Masculino , Nova Zelândia/epidemiologia , Análise Espacial
14.
Mov Disord ; 36(11): 2530-2538, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34374460

RESUMO

BACKGROUND: Parkinson's disease (PD) may result from the combined effect of multiple etiological factors. The relationship between disease incidence and age, as demonstrated in the cancer literature, can be used to model a multistep pathogenic process, potentially affording unique insights into disease development. OBJECTIVES: We tested whether the observed incidence of PD is consistent with a multistep process, estimated the number of steps required and whether this varies with age, and examined drivers of sex differences in PD incidence. METHODS: Our validated probabilistic modeling process, based on medication prescribing, generated nationwide age- and sex-adjusted PD incidence data spanning 2006-2017. Models of log(incidence) versus log(age) were compared using Bayes factors, to estimate (1) if a linear relationship was present (indicative of a multistep process); (2) the relationship's slope (one less than number of steps); (3) whether slope was lower at younger ages; and (4) whether slope or y-intercept varied with sex. RESULTS: Across >15,000 incident cases of PD, there was a clear linear relationship between log(age) and log(incidence). Evidence was strongest for a model with an initial slope of 5.2 [3.8, 6.4], an inflexion point at age 45, and beyond this a slope of 6.8 [6.4, 7.2]. There was evidence for the intercept varying by sex, but no evidence for slope being sex-dependent. CONCLUSIONS: The age-specific incidence of PD is consistent with a process that develops in multiple, discrete steps - on average six before age 45 and eight after. The model supports theories emphasizing the primacy of environmental factors in driving sex differences in PD incidence. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Modelos Biológicos , Doença de Parkinson , Adulto , Teorema de Bayes , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/epidemiologia , Doença de Parkinson/patologia
15.
N Z Med J ; 134(1538): 44-51, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34239144

RESUMO

AIMS: Stress plays a key role in Parkinson's disease (PD) by acting on the dopaminergic system and worsening patients' motor function. The impact of New Zealand's strict lockdown measures to contain COVID-19 on perceived stress and PD motor symptoms remains unknown. Here we examined the relationship between perceived levels of stress, changes in physical activity levels and PD motor symptoms during lockdown. METHODS: During lockdown, 134 participants with PD and 49 controls completed a survey assessing perceived stress, self-reported changes in PD motor symptoms and physical activity duration and intensity prior to and during lockdown. RESULTS: Perceived stress was higher in PD than controls, and in those reporting a worsening of tremor, balance/gait, dyskinesia and bradykinesia compared to those indicating no change during the COVID-19 lockdown. These effects were not modulated by physical activity. CONCLUSIONS: Reducing stressors may be an important adjunct treatment strategy to improve motor function in PD.


Assuntos
COVID-19/prevenção & controle , Doença de Parkinson/psicologia , Estresse Psicológico/complicações , Estudos de Casos e Controles , Progressão da Doença , Exercício Físico , Marcha , Humanos , Hipocinesia/etiologia , Nova Zelândia , Doença de Parkinson/complicações , Equilíbrio Postural , SARS-CoV-2 , Inquéritos e Questionários , Tremor/etiologia
16.
Mov Disord ; 36(11): 2583-2594, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34288137

RESUMO

BACKGROUND: Brain structure abnormalities throughout the course of Parkinson's disease have yet to be fully elucidated. OBJECTIVE: Using a multicenter approach and harmonized analysis methods, we aimed to shed light on Parkinson's disease stage-specific profiles of pathology, as suggested by in vivo neuroimaging. METHODS: Individual brain MRI and clinical data from 2357 Parkinson's disease patients and 1182 healthy controls were collected from 19 sources. We analyzed regional cortical thickness, cortical surface area, and subcortical volume using mixed-effects models. Patients grouped according to Hoehn and Yahr stage were compared with age- and sex-matched controls. Within the patient sample, we investigated associations with Montreal Cognitive Assessment score. RESULTS: Overall, patients showed a thinner cortex in 38 of 68 regions compared with controls (dmax  = -0.20, dmin  = -0.09). The bilateral putamen (dleft  = -0.14, dright  = -0.14) and left amygdala (d = -0.13) were smaller in patients, whereas the left thalamus was larger (d = 0.13). Analysis of staging demonstrated an initial presentation of thinner occipital, parietal, and temporal cortices, extending toward rostrally located cortical regions with increased disease severity. From stage 2 and onward, the bilateral putamen and amygdala were consistently smaller with larger differences denoting each increment. Poorer cognition was associated with widespread cortical thinning and lower volumes of core limbic structures. CONCLUSIONS: Our findings offer robust and novel imaging signatures that are generally incremental across but in certain regions specific to disease stages. Our findings highlight the importance of adequately powered multicenter collaborations. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Doença de Parkinson/complicações , Tálamo/patologia
17.
Mov Disord Clin Pract ; 8(3): 390-399, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33816668

RESUMO

BACKGROUND: Neuropsychiatric symptoms in Parkinson's disease (PD) may increase dementia (PDD) risk. The predictive value of these symptoms, however, has not been compared to clinical and demographic predictors of future PDD. OBJECTIVES: Determine if neuropsychiatric symptoms are useful markers of PDD risk. METHODS: 328 PD participants completed baseline neuropsychiatric and MDS-Task Force-Level II assessments. Of these, 202 non-demented individuals were followed-up over a four-years period to detect conversion to PDD; 51 developed PDD. ROC analysis tested associations between baseline neuropsychiatric symptoms and future PDD. The probability of developing PDD was also modeled as a function of neuropsychiatric inventory (NPI)-total score, PD Questionnaire (PDQ)-hallucinations, PDQ-anxiety, and contrasted to cognitive ability, age, and motor function. Leave-one-out information criterion was used to evaluate which models provided useful information when predicting future PDD. RESULTS: The PDD group experienced greater levels of neuropsychiatric symptoms compared to the non-PDD groups at baseline. Few differences were found between the PD-MCI and PD-N groups. Six neuropsychiatric measures were significantly, but weakly, associated with future PDD. The strongest was NPI-total score: AUC = 0.66 [0.57-0.75]. There was, however, no evidence it contained useful out-of-sample predictive information of future PDD (delta ELPD = 1.8 (SD 2.5)); Similar results held for PDQ-hallucinations and PDQ-anxiety. In contrast, cognitive ability (delta ELPD = 36 (SD 8)) and age (delta ELPD = 11 (SD 5)) provided useful predictive information of future PDD. CONCLUSIONS: Cognitive ability and age strongly out-performed neuropsychiatric measures as markers of developing PDD within 4 years. Therefore, neuropsychiatric symptoms do not appear to be useful markers of PDD risk.

18.
Genome Biol ; 22(1): 90, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771206

RESUMO

BACKGROUND: People with neurodegenerative disorders show diverse clinical syndromes, genetic heterogeneity, and distinct brain pathological changes, but studies report overlap between these features. DNA methylation (DNAm) provides a way to explore this overlap and heterogeneity as it is determined by the combined effects of genetic variation and the environment. In this study, we aim to identify shared blood DNAm differences between controls and people with Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. RESULTS: We use a mixed-linear model method (MOMENT) that accounts for the effect of (un)known confounders, to test for the association of each DNAm site with each disorder. While only three probes are found to be genome-wide significant in each MOMENT association analysis of amyotrophic lateral sclerosis and Parkinson's disease (and none with Alzheimer's disease), a fixed-effects meta-analysis of the three disorders results in 12 genome-wide significant differentially methylated positions. Predicted immune cell-type proportions are disrupted across all neurodegenerative disorders. Protein inflammatory markers are correlated with profile sum-scores derived from disease-associated immune cell-type proportions in a healthy aging cohort. In contrast, they are not correlated with MOMENT DNAm-derived profile sum-scores, calculated using effect sizes of the 12 differentially methylated positions as weights. CONCLUSIONS: We identify shared differentially methylated positions in whole blood between neurodegenerative disorders that point to shared pathogenic mechanisms. These shared differentially methylated positions may reflect causes or consequences of disease, but they are unlikely to reflect cell-type proportion differences.


Assuntos
Metilação de DNA , Epigênese Genética , Estudo de Associação Genômica Ampla , Doenças Neurodegenerativas/etiologia , Alelos , Biomarcadores , Células Sanguíneas/metabolismo , Estudos de Casos e Controles , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Loci Gênicos , Predisposição Genética para Doença , Humanos , Doenças Neurodegenerativas/metabolismo
19.
Antioxidants (Basel) ; 9(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977491

RESUMO

Oxidative stress is thought to contribute to the aetiology of neurological disorders such as Parkinson's disease. Ascorbate (vitamin C) is a potent antioxidant and is associated with neurological and cognitive function. In this study we assessed the ascorbate status of a cohort of people with Parkinson's disease (n = 215), aged 50-90 years, compared with a cohort of age matched healthy controls (n = 48). The study sample's cognitive status ranged from normal to mild cognitive impairment and dementia. There was no difference between the Parkinson's disease and healthy control groups with respect to mean ascorbate status, however, a higher proportion of participants with Parkinson's disease had hypovitaminosis C (i.e., <23 µmol/L) compared with healthy controls (20% vs. 8%, respectively). Within the Parkinson's disease group, Montreal Cognitive Assessment (MoCA) scores correlated positively with ascorbate concentrations, with higher ascorbate status associated with better cognitive function (r = 0.14, p = 0.045). Participants with hypovitaminosis C had significantly lower MoCA scores relative to participants with ascorbate concentrations >23 µmol/L (p = 0.014). Ascorbate concentrations were significantly lower in the cognitively impaired subgroup compared with the normal cognition subgroup in the Parkinson's disease cohort (p = 0.03). In contrast, urate showed an inverse correlation with cognitive function (r = -0.19, p = 0.007), with higher urate concentrations observed in the cognitively impaired subgroup compared with the normal cognition subgroup (p = 0.015). There was an inverse association between ascorbate status and urate concentrations (r = -0.15, p = 0.017). Plasma protein carbonyls, a measure of systemic oxidative stress, were not significantly different between the Parkinson's disease cohort and healthy controls, and there was no association with cognitive function (r = 0.09, p = 0.19) or with ascorbate status (r = -0.05, p = 0.45). Overall, our study showed ascorbate status was positively associated with cognitive function in Parkinson's disease, suggesting that longitudinal studies investigating the temporal sequence of cognitive decline and ascorbate status are warranted.

20.
Alzheimers Dement (Amst) ; 12(1): e12025, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32671179

RESUMO

OBJECTIVE: Cognitive impairment is a common feature of Parkinson disease (PD), for which age is a major contributing factor. Insulin-like growth factor-1 (IGF-1) declines with age and contributes to age-related cognitive impairment in PD. Cyclic glycine-proline (cGP) is a metabolite of IGF-1 and normalizes bioavailable IGF-1. Plasma cGP/IGF-1 molar ratio that represents bioactive IGF-1 in circulation, may associate with the cognitive status in PD. METHODS: We examined the association of plasma cGP/IGF-1 molar ratio with the cognitive scores or age in PD patients with normal cognition (PD-N, n = 74), mild cognitive impairment (PD-MCI, n = 71), or dementia (PD-D, n = 33), and with the cognitive scores in 23 age-matched healthy controls. Plasma concentrations of IGF-1, IGF binding protein-3, and cGP were evaluated using enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography-mass spectrometry (HPLC-MS), respectively. RESULTS: The cGP/IGF-1 molar ratio was positively correlated with the age of PD-N group, negatively correlated with the age of PD-D group, and not associated with the age of PD-MCI group. Independent of age, the cGP/IGF-1 molar ratio was positively correlated with the cognitive scores of healthy controls, but not in PD groups. CONCLUSION: Old healthy people with a higher cGP/IGF-1 molar ratio showed better preserved cognition, possibly due to improved IGF-1 function. Increased cGP/IGF-1 molar ratio with age may contribute to cognitive retention in the PD-N group. The absence or reversal of such association with age in the PD-MCI and PD-D groups may indicate the conversion of cognitive status in PD, if confirmed through longitudinal investigations within the individuals with advancing cognitive impairment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA