Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 757, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191915

RESUMO

Normothermic regional perfusion (NRP) allows assessment of therapeutic interventions prior to donation after circulatory death transplantation. Sodium-3-hydroxybutyrate (3-OHB) increases cardiac output in heart failure patients and diminishes ischemia-reperfusion injury, presumably by improving mitochondrial metabolism. We investigated effects of 3-OHB on cardiac and mitochondrial function in transplanted hearts and in cardiac organoids. Donor pigs (n = 14) underwent circulatory death followed by NRP. Following static cold storage, hearts were transplanted into recipient pigs. 3-OHB or Ringer's acetate infusions were initiated during NRP and after transplantation. We evaluated hemodynamics and mitochondrial function. 3-OHB mediated effects on contractility, relaxation, calcium, and conduction were tested in cardiac organoids from human pluripotent stem cells. Following NRP, 3-OHB increased cardiac output (P < 0.0001) by increasing stroke volume (P = 0.006), dP/dt (P = 0.02) and reducing arterial elastance (P = 0.02). Following transplantation, infusion of 3-OHB maintained mitochondrial respiration (P = 0.009) but caused inotropy-resistant vasoplegia that prevented weaning. In cardiac organoids, 3-OHB increased contraction amplitude (P = 0.002) and shortened contraction duration (P = 0.013) without affecting calcium handling or conduction velocity. 3-OHB had beneficial cardiac effects and may have a potential to secure cardiac function during heart transplantation. Further studies are needed to optimize administration practice in donors and recipients and to validate the effect on mitochondrial function.


Assuntos
Cálcio , Transplante de Coração , Humanos , Animais , Suínos , Ácido 3-Hidroxibutírico , Coração , Artérias , Cálcio da Dieta , Hidroxibutiratos , Corpos Cetônicos
2.
J Heart Lung Transplant ; 42(6): 730-740, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36918339

RESUMO

BACKGROUND: Heart transplantation in donation after circulatory death (DCD) relies on warm perfusion using either in situ normothermic regional perfusion (NRP) or ex situ normothermic machine perfusion. In this study, we explore an alternative: oxygenated hypothermic machine perfusion (HMP) using a novel clinically applicable perfusion system, which is compared to NRP with static cold storage (SCS). METHODS: In a porcine model, a DCD setting was simulated, followed by either (1) NRP and SCS (2) NRP and HMP with the XVIVO Heart preservation system or (3) direct procurement (DPP) and HMP. After preservation, heart transplantation (HTX) was performed. After weaning from cardiopulmonary bypass (CPB), biventricular function was assessed by admittance and Swan-Ganz catheters. RESULTS: Only transplanted hearts in the HMP groups showed significantly increased biventricular contractility (end-systole elastance) 2 hour post-CPB (left ventricle absolute change: NRP HMP: +1.8 ± 0.56, p = 0.047, DPP HMP: +1.5 ± 0.43, p = 0.045 and NRP SCS: +0.97 ± 0.47 mmHg/ml, p = 0.21; right ventricle absolute change: NRP HMP: +0.50 ± 0.12, p = 0.025, DPP HMP: +0.82 ± 0.23, p = 0.039 and NRP SCS: +0.28 ± 0.26, p = 0.52) while receiving significantly less dobutamine to maintain a cardiac output >4l/min compared to SCS. Diastolic function was preserved in all groups. Post-HTX, both HMP groups showed significantly less increments in plasma troponin T compared to SCS. CONCLUSION: In DCD HTX, increased biventricular contractility post-HTX was only observed in hearts preserved with HMP. In addition, the need for inotropic support and signs of myocardial damage were lower in the HMP groups. DCD HTX can be successfully performed using DPP followed by preservation with HMP in a preclinical setting.


Assuntos
Transplante de Coração , Obtenção de Tecidos e Órgãos , Suínos , Animais , Humanos , Preservação de Órgãos , Perfusão , Circulação Extracorpórea , Coração , Doadores de Tecidos , Morte
3.
Transplantation ; 107(1): e3-e10, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36042552

RESUMO

BACKGROUND: The hemodynamic effects of aortic arch vessel (AAV) clamping during normothermic regional perfusion (NRP) in donation after circulatory death is unknown. We investigated effects of AAV clamping during NRP compared with no clamping in a porcine model. METHODS: In 16 pigs, hemodynamic parameters were recorded including biventricular pressure-volume measurements and invasive blood pressure. Additionally, blood gas parameters and inflammatory cytokines were used to assess the effect of AAV clamping. The animals were centrally cannulated for NRP, and baseline measurements were obtained before hypoxic circulatory arrest was induced by halting mechanical ventilation. During an 8-min asystole period, the animals were randomized to clamp (n = 8) or no-clamp (n = 8) of the AAV before commencement of NRP. During NRP, circulation was supported with norepinephrine (NE) and dobutamine. After 30 min of NRP, animals were weaned and observed for 180 min post-NRP. RESULTS: All hearts were successfully reanimated and weaned from NRP. The nonclamp groups received significantly more NE to maintain a mean arterial pressure >60 mm Hg during and after NRP compared with the clamp group. There were no between group differences in blood pressure or cardiac output. Pressure-volume measurements demonstrated preserved cardiac function' including ejection fraction and diastolic and systolic function. No between group differences in inflammatory markers were observed. CONCLUSIONS: AAV clamping did not negatively affect donor cardiac function or inflammation after circulatory death and NRP. Significantly less NE was used to support in the clamp group than in the nonclamp group.


Assuntos
Parada Cardíaca , Preservação de Órgãos , Animais , Aorta Torácica , Morte , Perfusão/efeitos adversos , Suínos , Coleta de Tecidos e Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA