RESUMO
BACKGROUND: The neurobiological underpinnings of Autism Spectrum Disorder (ASD) are diverse and likely multifactorial. One possible mechanism is increased oxidative stress leading to altered neurodevelopment and brain function. However, this hypothesis has mostly been tested in post-mortem studies. So far, available in vivo studies in autistic individuals have reported no differences in glutathione (GSH) levels in frontal, occipital, and subcortical regions. However, these studies were limited by the technically challenging quantification of GSH, the main brain antioxidant molecule. This study aimed to overcome previous studies' limitations by using a GSH-tailored spectroscopy sequence and optimised quantification methodology to provide clarity on GSH levels in autistic adults. METHODS: We used spectral editing proton-magnetic resonance spectroscopy (1H-MRS) combined with linear combination model fitting to quantify GSH in the dorsomedial prefrontal cortex (DMPFC) and medial occipital cortex (mOCC) of autistic and non-autistic adults (male and female). We compared GSH levels between groups. We also examined correlations between GSH and current autism symptoms, measured using the Autism Quotient (AQ). RESULTS: Data were available from 31 adult autistic participants (24 males, 7 females) and 40 non-autistic participants (21 males, 16 females); the largest sample to date. The GSH levels did not differ between groups in either region. No correlations with AQ were observed. CONCLUSION: GSH levels as measured using 1H-MRS are unaltered in the DMPFC and mOCC regions of autistic adults, suggesting that oxidative stress in these cortical regions is not a marked neurobiological signature of ASD.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Glutationa , Lobo Occipital , Humanos , Masculino , Feminino , Glutationa/metabolismo , Glutationa/análise , Adulto , Lobo Occipital/metabolismo , Lobo Occipital/diagnóstico por imagem , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Adulto Jovem , Espectroscopia de Prótons por Ressonância Magnética , Lobo Frontal/metabolismo , Estresse Oxidativo , Pessoa de Meia-Idade , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/diagnóstico por imagemRESUMO
BACKGROUND: 22q11.2 Deletion Syndrome (22qDel) is a copy number variant (CNV) associated with psychosis and other neurodevelopmental disorders. Adolescents at clinical high risk for psychosis (CHR) are identified based on the presence of subthreshold psychosis symptoms. Whether common neural substrates underlie these distinct high-risk populations is unknown. We compared functional brain measures in 22qDel and CHR cohorts and mapped results to biological pathways. METHODS: We analyzed two large multi-site cohorts with resting-state functional MRI (rs-fMRI): 1) 22qDel (n=164, 47% female) and typically developing (TD) controls (n=134, 56% female); 2) CHR individuals (n=244, 41% female) and TD controls (n=151, 46% female) from the North American Prodrome Longitudinal Study-2. We computed global brain connectivity (GBC), local connectivity (LC), and brain signal variability (BSV) across cortical regions, testing case-control differences for 22qDel and CHR separately. Group difference maps were related to published brain maps using autocorrelation-preserving permutation. RESULTS: BSV, LC, and GBC are significantly disrupted in 22qDel compared with TD controls (False Discovery Rate q<0.05). Spatial maps of BSV and LC differences are highly correlated with each other, unlike GBC. In CHR, only LC is significantly altered versus controls, with a different spatial pattern compared to 22qDel. Group differences map onto biological gradients, with 22qDel effects strongest in regions with high predicted blood flow and metabolism. CONCLUSION: 22qDel and CHR exhibit divergent effects on fMRI temporal variability and multi-scale functional connectivity. In 22qDel, strong and convergent disruptions in BSV and LC not seen in CHR individuals suggest distinct functional brain alterations.
RESUMO
Importance: The use of evidence-based standardized outcome measures is increasingly recognized as key to guiding clinical decision-making in mental health. Implementation of these measures into clinical practice has been hampered by lack of clarity on what to measure and how to do this in a reliable and standardized way. Objective: To develop a core set of outcome measures for specific neurodevelopmental disorders (NDDs), such as attention-deficit/hyperactivity disorder (ADHD), communication disorders, specific learning disorders, and motor disorders, that may be used across a range of geographic and cultural settings. Evidence Review: An international working group composed of clinical and research experts and service users (n = 27) was convened to develop a standard core set of accessible, valid, and reliable outcome measures for children and adolescents with NDDs. The working group participated in 9 video conference calls and 8 surveys between March 1, 2021, and June 30, 2022. A modified Delphi approach defined the scope, outcomes, included measures, case-mix variables, and measurement time points. After development, the NDD set was distributed to professionals and service users for open review, feedback, and external validation. Findings: The final set recommends measuring 12 outcomes across 3 key domains: (1) core symptoms related to the diagnosis; (2) impact, functioning, and quality of life; and (3) common coexisting problems. The following 14 measures should be administered at least every 6 months to monitor these outcomes: ADHD Rating Scale 5, Vanderbilt ADHD Diagnostic Rating Scale, or Swanson, Nolan, and Pelham Rating Scale IV; Affective Reactivity Index; Children's Communication Checklist 2; Colorado Learning Disabilities Questionnaire; Children's Sleep Habits Questionnaire; Developmental-Disability Children's Global Assessment Scale; Developmental Coordination Disorder Questionnaire; Family Strain Index; Intelligibility in Context Scale; Vineland Adaptive Behavior Scale or Repetitive Behavior Scale-Revised and Social Responsiveness Scale; Revised Child Anxiety and Depression Scales; and Yale Global Tic Severity Scale. The external review survey was completed by 32 professionals and 40 service users. The NDD set items were endorsed by more than 70% of professionals and service users in the open review survey. Conclusions and Relevance: The NDD set covers outcomes of most concern to patients and caregivers. Use of the NDD set has the potential to improve clinical practice and research.
Assuntos
Consenso , Transtornos do Neurodesenvolvimento , Avaliação de Resultados em Cuidados de Saúde , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Criança , Adolescente , Técnica Delphi , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , FemininoRESUMO
BACKGROUND: The underlying neurobiology of the complex autism phenotype remains obscure, although accumulating evidence implicates the serotonin system and especially the 5HT2A receptor. However, previous research has largely relied upon association or correlation studies to link differences in serotonin targets to autism. To directly establish that serotonergic signalling is involved in a candidate brain function our approach is to change it and observe a shift in that function. We will use psilocybin as a pharmacological probe of the serotonin system in vivo. We will directly test the hypothesis that serotonergic targets of psilocybin - principally, but not exclusively, 5HT2A receptor pathways-function differently in autistic and non-autistic adults. METHODS: The 'PSILAUT' "shiftability" study is a case-control study autistic and non-autistic adults. How neural responses 'shift' in response to low doses (2 mg and 5 mg) of psilocybin compared to placebo will be examined using multimodal techniques including functional MRI and EEG. Each participant will attend on up to three separate visits with drug or placebo administration in a double-blind and randomized order. RESULTS: This study will provide the first direct evidence that the serotonin targets of psilocybin function differently in the autistic and non-autistic brain. We will also examine individual differences in serotonin system function. CONCLUSIONS: This work will inform our understanding of the neurobiology of autism as well as decisions about future clinical trials of psilocybin and/or related compounds including stratification approaches. TRIAL REGISTRATION: NCT05651126.
Assuntos
Transtorno Autístico , Encéfalo , Imageamento por Ressonância Magnética , Psilocibina , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Transtorno Autístico/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Método Duplo-Cego , Eletroencefalografia , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Psilocibina/uso terapêutico , Psilocibina/farmacologia , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/metabolismo , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Alterations in γ-aminobutyric acid (GABA) have been implicated in sensory differences in individuals with autism spectrum disorder (ASD). Visual signals are initially processed in the retina, and in this study, we explored the hypotheses that the GABA-dependent retinal response to light is altered in individuals with ASD. Light-adapted electroretinograms were recorded from 61 adults (38 males and 23 females; n = 22 ASD) in response to three stimulus protocols: (1) the standard white flash, (2) the standard 30â Hz flickering protocol, and (3) the photopic negative response protocol. Participants were administered an oral dose of placebo, 15 or 30â mg of arbaclofen (STX209, GABAB agonist) in a randomized, double-blind, crossover order before the test. At baseline (placebo), the a-wave amplitudes in response to single white flashes were more prominent in ASD, relative to typically developed (TD) participants. Arbaclofen was associated with a decrease in the a-wave amplitude in ASD, but an increase in TD, eliminating the group difference observed at baseline. The extent of this arbaclofen-elicited shift significantly correlated with the arbaclofen-elicited shift in cortical responses to auditory stimuli as measured by using an electroencephalogram in our prior study and with broader autistic traits measured with the autism quotient across the whole cohort. Hence, GABA-dependent differences in retinal light processing in ASD appear to be an accessible component of a wider autistic difference in the central processing of sensory information, which may be upstream of more complex autistic phenotypes.
Assuntos
Transtorno do Espectro Autista , Masculino , Adulto , Feminino , Humanos , Transtorno do Espectro Autista/tratamento farmacológico , Retina , Eletroencefalografia , Ácido gama-Aminobutírico , EletrorretinografiaRESUMO
22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.
Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Feminino , Humanos , Adolescente , Masculino , Síndrome de DiGeorge/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Transtornos Psicóticos/complicações , Substância Cinzenta/diagnóstico por imagemRESUMO
Clinical trials of pharmacological candidates targeting the core features of autism have largely failed. This is despite evidence linking differences in multiple neurochemical systems to brain function in autism. While this has in part been explained by the heterogeneity of the autistic population, the field has largely relied upon association studies to link brain chemistry to function. The only way to directly establish that a neurotransmitter or neuromodulator is involved in a candidate brain function is to change it and observe a shift in that function. This experimental approach dominates preclinical neuroscience, but not human studies. There is little direct experimental evidence describing how neurochemical systems modulate information processing in the living human brain. Thus, our understanding of how neurochemical differences contribute to neurodiversity is limited, impeding our ability to translate findings from animal studies into humans. Here, we introduce our 'shiftability' paradigm, an approach to bridge the translational gap in autism research. We provide an overview of the guiding principles and methodologies we use to directly test the hypothesis that neurochemical systems function differently in autistic and non-autistic individuals.
Assuntos
Pesquisa Translacional Biomédica , Humanos , Transtorno Autístico/fisiopatologia , Neurociências , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Animais , Encéfalo/fisiopatologia , Encéfalo/metabolismoRESUMO
Altered reactivity and responses to auditory input are core to the diagnosis of autism spectrum disorder (ASD). Preclinical models implicate Ï-aminobutyric acid (GABA) in this process. However, the link between GABA and auditory processing in humans (with or without ASD) is largely correlational. As part of a study of potential biosignatures of GABA function in ASD to inform future clinical trials, we evaluated the role of GABA in auditory repetition suppression in 66 adults (n = 28 with ASD). Neurophysiological responses (temporal and frequency domains) to repetitive standard tones and novel deviants presented in an oddball paradigm were compared after double-blind, randomized administration of placebo, 15 or 30 mg of arbaclofen (STX209), a GABA type B (GABAB) receptor agonist. We first established that temporal mismatch negativity was comparable between participants with ASD and those with typical development (TD). Next, we showed that temporal and spectral responses to repetitive standards were suppressed relative to responses to deviants in the two groups, but suppression was significantly weaker in individuals with ASD at baseline. Arbaclofen reversed weaker suppression of spectral responses in ASD but disrupted suppression in TD. A post hoc analysis showed that arbaclofen-elicited shift in suppression was correlated with autistic symptomatology measured using the Autism Quotient across the entire group, though not in the smaller sample of the ASD and TD group when examined separately. Thus, our results confirm: GABAergic dysfunction contributes to the neurophysiology of auditory sensory processing alterations in ASD, and can be modulated by targeting GABAB activity. These GABA-dependent sensory differences may be upstream of more complex autistic phenotypes.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adulto , Humanos , Percepção Auditiva/fisiologia , Agonistas dos Receptores de GABA-B/farmacologia , Agonistas dos Receptores de GABA-B/uso terapêutico , Ácido gama-AminobutíricoRESUMO
Dopaminergic dysregulation is one of the leading hypotheses for the pathoetiology underlying psychotic disorders such as schizophrenia. Molecular imaging studies have shown increased striatal dopamine synthesis capacity (DSC) in schizophrenia and people in the prodrome of psychosis. However, it is unclear if genetic risk for psychosis is associated with altered DSC. To investigate this, we recruited healthy controls and two antipsychotic naive groups of individuals with copy number variants, one with a genetic deletion at chromosome 22q11.2, and the other with a duplication at the same locus, who are at increased and decreased risk for psychosis, respectively. Fifty-nine individuals (21 with 22q11.2 deletion, 12 with the reciprocal duplication and 26 healthy controls) received clinical measures and [18F]-DOPA PET imaging to index striatal Kicer. There was an inverse linear effect of copy number variant number on striatal Kicer value (B = -1.2 × 10-3, SE = 2 × 10-4, p < 0.001), with controls showing levels intermediate between the two variant groups. Striatal Kicer was significantly higher in the 22q11.2 deletion group compared to the healthy control (p < 0.001, Cohen's d = 1.44) and 22q11.2 duplication (p < 0.001, Cohen's d = 2) groups. Moreover, Kicer was positively correlated with the severity of psychosis-risk symptoms (B = 730.5, SE = 310.2, p < 0.05) and increased over time in the subject who went on to develop psychosis, but was not associated with anxiety or depressive symptoms. Our findings suggest that genetic risk for psychosis is associated with dopaminergic dysfunction and identify dopamine synthesis as a potential target for treatment or prevention of psychosis in 22q11.2 deletion carriers.
Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Humanos , Dopamina , Variações do Número de Cópias de DNA/genética , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/genética , Di-Hidroxifenilalanina , Síndrome de DiGeorge/diagnóstico por imagem , Síndrome de DiGeorge/genética , Tomografia por Emissão de Pósitrons/métodosRESUMO
BACKGROUND: Offspring exposed to prenatal maternal depression (PMD) are vulnerable to depression across their lifespan. The underlying cause(s) for this elevated intergenerational risk is most likely complex. However, depression is underpinned by a dysfunctional frontal-limbic network, associated with core information processing biases (e.g. attending more to sad stimuli). Aberrations in this network might mediate transmission of this vulnerability in infants exposed to PMD. In this study, we aimed to explore the association between foetal exposure to PMD and frontal-limbic network function in infancy, hypothesising that, in response to emotional sounds, infants exposed to PMD would exhibit atypical activity in these regions, relative to those not exposed to PMD. METHOD: We employed a novel functional magnetic resonance imaging sequence to compare brain function, whilst listening to emotional sounds, in 78 full-term infants (3-6 months of age) born to mothers with and without a diagnosis of PMD. RESULTS: After exclusion of 19 datasets due to infants waking up, or moving excessively, we report between-group brain activity differences, between 29 infants exposed to PMD and 29 infants not exposed to PMD, occurring in temporal, striatal, amygdala/parahippocampal and frontal regions (p < 0.005). The offspring exposed to PMD exhibited a relative increase in activation to sad sounds and reduced (or unchanged) activation to happy sounds in frontal-limbic clusters. CONCLUSIONS: Findings of a differential response to positive and negative valanced sounds by 3-6 months of age may have significant implications for our understanding of neural mechanisms that underpin the increased risk for later-life depression in this population.
Assuntos
Depressão , Emoções , Lactente , Gravidez , Feminino , Humanos , Emoções/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Lobo Frontal/diagnóstico por imagemRESUMO
BACKGROUND: Alterations in the serotonergic control of brain pathways responsible for facial emotion processing in people with autism spectrum disorder (ASD) may be a target for intervention. However, the molecular underpinnings of autistic-neurotypical serotonergic differences are challenging to access in vivo. Receptor-Enriched Analysis of functional Connectivity by Targets (REACT) has helped define molecular-enriched functional magnetic resonance imaging (fMRI) brain networks based on a priori information about the spatial distribution of neurochemical systems from available PET templates. METHODS: We used REACT to estimate the dominant fMRI signal related to the serotonin (5-HT) transporter (SERT) distribution during processing of aversive facial emotion in adults with and without ASD. We first predicted a group difference in baseline (placebo) functioning of this system. We next used a single 20 mg oral dose of citalopram, a serotonin reuptake inhibitor, to test the hypothesis that network activity in people with and without ASD would respond differently to inhibition of SERT. To confirm the specificity of our findings, we also repeated the analysis with 5-HT1A, 5-HT1B, 5-HT2A and 5-HT4 receptor maps. RESULTS: Using REACT with the SERT map, we found a baseline group difference in the SERT-enriched response to faces in the ventromedial prefrontal cortex. A single oral dose of citalopram 'shifted' the response in the ASD group towards the neurotypical baseline but did not alter response in the control group. Similar differences in SERT-enriched response were observed after controlling for other 5-HT maps. CONCLUSIONS: Our findings suggest that the SERT-enriched functional network is dynamically different in ASD during processing of socially relevant stimuli. Whether this acute neurobiological response to citalopram in ASD translates to a clinical target will be an important next step.
Assuntos
Transtorno do Espectro Autista , Proteínas da Membrana Plasmática de Transporte de Serotonina , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/tratamento farmacológico , Encéfalo/metabolismo , Citalopram/farmacologia , Citalopram/uso terapêutico , Estudos Cross-Over , Humanos , Imageamento por Ressonância Magnética , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismoRESUMO
LAY ABSTRACT: There has been growing interest in offending and contact with the criminal justice system (CJS) by people with autism spectrum disorder (ASD). However, it is not clear whether people with ASD offend more than those without ASD. Studies have started to look at whether there are particular offences people with ASD are more likely to commit and whether there are any factors that can affect whether someone comes into contact with the CJS as a potential suspect. This study looked at the patients who attended an ASD diagnostic service over a 17-year period to see the rate of contact with the CJS of those who were diagnosed with ASD and whether there were any particular factors that might increase the risk of CJS contact. Nearly a quarter of the ASD group had some contact with the CJS as a potential suspect. Factors that seemed to increase whether someone with ASD was more likely to have contact with the CJS were being male, being diagnosed with ADHD, and being diagnosed with psychosis. This study is one of the largest studies to investigate the rate of CJS contact as a potential suspect in a sample of adults with ASD in an attempt to give a clearer picture of what might influence someone with ASD to engage in offending behaviour in order to try to see what mental health services can offer to reduce the likelihood of someone with ASD coming into contact with the CJS, for example, treatment for another condition or support.
Assuntos
Transtorno do Espectro Autista , Adulto , Humanos , Masculino , Feminino , Transtorno do Espectro Autista/epidemiologia , Direito Penal , Prevalência , Caracteres Sexuais , Fatores de RiscoRESUMO
Small average differences in the left-right asymmetry of cerebral cortical thickness have been reported in individuals with autism spectrum disorder (ASD) compared to typically developing controls, affecting widespread cortical regions. The possible impacts of these regional alterations in terms of structural network effects have not previously been characterized. Inter-regional morphological covariance analysis can capture network connectivity between different cortical areas at the macroscale level. Here, we used cortical thickness data from 1455 individuals with ASD and 1560 controls, across 43 independent datasets of the ENIGMA consortium's ASD Working Group, to assess hemispheric asymmetries of intra-individual structural covariance networks, using graph theory-based topological metrics. Compared with typical features of small-world architecture in controls, the ASD sample showed significantly altered average asymmetry of networks involving the fusiform, rostral middle frontal, and medial orbitofrontal cortex, involving higher randomization of the corresponding right-hemispheric networks in ASD. A network involving the superior frontal cortex showed decreased right-hemisphere randomization. Based on comparisons with meta-analyzed functional neuroimaging data, the altered connectivity asymmetry particularly affected networks that subserve executive functions, language-related and sensorimotor processes. These findings provide a network-level characterization of altered left-right brain asymmetry in ASD, based on a large combined sample. Altered asymmetrical brain development in ASD may be partly propagated among spatially distant regions through structural connectivity.
Assuntos
Transtorno do Espectro Autista , Encéfalo , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Vias NeuraisRESUMO
Sensory atypicalities in autism spectrum disorder (ASD) are thought to arise at least partly from differences in γ-aminobutyric acid (GABA) receptor function. However, the evidence to date has been indirect, arising from correlational studies in patients and preclinical models. Here, we evaluated the role of GABA receptor directly, in 44 adults (n = 19 ASD). Baseline concentration of occipital lobe GABA+ (GABA plus coedited macromolecules) was measured using proton magnetic resonance spectroscopy (1H-MRS). Steady-state visual evoked potential (SSVEP) elicited by a passive visual surround suppression paradigm was compared after double-blind randomized oral administration of placebo or 15 to 30 mg of arbaclofen (STX209), a GABA type B (GABAB) receptor agonist. In the placebo condition, the neurotypical SSVEP response was affected by both the foreground stimuli contrast and background interference (suppression). In ASD, however, all stimuli conditions had equal salience and background suppression of the foreground response was weaker. In the placebo condition, although there was no difference in GABA+ between groups, GABA+ concentration positively correlated with response to maximum foreground contrast during maximum background interference in neurotypicals, but not ASD. In neurotypicals, sensitivity to visual stimuli was disrupted by 30 mg of arbaclofen, whereas in ASD, it was made more "typical" and visual processing differences were abolished. Hence, differences in GABAergic function are fundamental to autistic (visual) sensory neurobiology and are modulated by GABAB activity.
Assuntos
Transtorno do Espectro Autista , Adulto , Potenciais Evocados Visuais , Humanos , Espectroscopia de Ressonância Magnética/métodos , Receptores de GABA , Percepção Visual , Ácido gama-AminobutíricoRESUMO
Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case-control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case-control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Encéfalo , Neuroimagem , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Estudos Multicêntricos como Assunto , NeurociênciasRESUMO
BACKGROUND: Autism spectrum disorder (ASD) has a high cost to affected individuals and society, but treatments for core symptoms are lacking. To expand intervention options, it is crucial to gain a better understanding of potential treatment targets, and their engagement, in the brain. For instance, the striatum (caudate, putamen, and nucleus accumbens) plays a central role during development and its (atypical) functional connectivity (FC) may contribute to multiple ASD symptoms. We have previously shown, in the adult autistic and neurotypical brain, the non-intoxicating cannabinoid cannabidivarin (CBDV) alters the balance of striatal 'excitatory-inhibitory' metabolites, which help regulate FC, but the effects of CBDV on (atypical) striatal FC are unknown. METHODS: To examine this in a small pilot study, we acquired resting state functional magnetic resonance imaging data from 28 men (15 neurotypicals, 13 ASD) on two occasions in a repeated-measures, double-blind, placebo-controlled study. We then used a seed-based approach to (1) compare striatal FC between groups and (2) examine the effect of pharmacological probing (600 mg CBDV/matched placebo) on atypical striatal FC in ASD. Visits were separated by at least 13 days to allow for drug washout. RESULTS: Compared to the neurotypicals, ASD individuals had lower FC between the ventral striatum and frontal and pericentral regions (which have been associated with emotion, motor, and vision processing). Further, they had higher intra-striatal FC and higher putamenal FC with temporal regions involved in speech and language. In ASD, CBDV reduced hyperconnectivity to the neurotypical level. LIMITATIONS: Our findings should be considered in light of several methodological aspects, in particular our participant group (restricted to male adults), which limits the generalizability of our findings to the wider and heterogeneous ASD population. CONCLUSION: In conclusion, here we show atypical striatal FC with regions commonly associated with ASD symptoms. We further provide preliminary proof of concept that, in the adult autistic brain, acute CBDV administration can modulate atypical striatal circuitry towards neurotypical function. Future studies are required to determine whether modulation of striatal FC is associated with a change in ASD symptoms. TRIAL REGISTRATION: clinicaltrials.gov, Identifier: NCT03537950. Registered May 25th, 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03537950?term=NCT03537950&draw=2&rank=1 .
Assuntos
Transtorno do Espectro Autista , Canabinoides , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Projetos PilotoRESUMO
BACKGROUND: Maternal depression in pregnancy increases the risk for adverse neurodevelopmental outcomes in the offspring. The reason for this is unknown, however, one plausible mechanism may include the impact of maternal antenatal depression on infant brain. Nevertheless, relatively few studies have examined the brain anatomy of infants born to clinically diagnosed mothers. METHODS: A legacy magnetic resonance imaging (MRI) dataset was used to compare regional brain volumes in 3-to-6-month-old infants born to women with a clinically confirmed diagnosis of major depressive disorder (MDD) during pregnancy (n = 31) and a reference sample of infants born to women without a current or past psychiatric diagnosis (n = 33). A method designed for analysis of low-resolution scans enabled examination of subcortical and midbrain regions previously found to be sensitive to the parent-child environment. RESULTS: Compared with infants of non-depressed mothers, infants exposed to maternal antenatal depression had significantly larger subcortical grey matter volumes and smaller midbrain volumes. There was no association between gestational medication exposure and the infant regional brain volumes examined in our sample. LIMITATIONS: Our scanning approach did not allow for an examination of fine-grained structural differences, and without repeated measures of brain volume, it is unknown whether the direction of reported associations are dependent on developmental stage. CONCLUSIONS: Maternal antenatal depression is associated with an alteration in infant brain anatomy in early postnatal life; and that this is not accounted for by medication exposure. However, our study cannot address whether anatomical differences impact on future outcomes of the offspring.
Assuntos
Depressão , Transtorno Depressivo Maior , Encéfalo/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Mesencéfalo , GravidezRESUMO
BACKGROUND: Autism spectrum disorder (ASD) is associated with deficits in executive functioning (EF), and these have been suggested to contribute to core as well as co-occurring psychiatric symptoms. The biological basis of these deficits is unknown but may include the serotonergic system, which is involved both in regulating EF in neurotypical populations and in the pathophysiology of ASD. We previously demonstrated that reducing serotonin by acute tryptophan depletion (ATD) shifts differences in brain function during performance of EF tasks towards control levels. However, ATD cannot be easily used in the clinic, and we therefore need to adopt alternative approaches to challenge the serotonin system. Hence, we investigated the role of the serotonergic modulator tianeptine on EF networks in ASD. METHOD: We conducted a pharmacological magnetic resonance imaging study, using a randomized double-blind crossover design, to compare the effect of an acute dosage of 12.5 mg tianeptine and placebo on brain activation during two EF tasks (of response inhibition and sustained attention) in 38 adult males: 19 with ASD and 19 matched controls. RESULTS: Under placebo, compared to controls, individuals with ASD had atypical brain activation in response inhibition regions including the inferior frontal cortex, premotor regions and cerebellum. During sustained attention, individuals with ASD had decreased brain activation in the right middle temporal cortex, right cuneus and left precuneus. Most of the case-control differences in brain function observed under placebo conditions were abolished by tianeptine administration. Also, within ASD individuals, brain functional differences were shifted significantly towards control levels during response inhibition in the inferior frontal and premotor cortices. LIMITATIONS: We conducted a pilot study using a single dose of tianeptine, and therefore, we cannot comment on long-term outcome. CONCLUSIONS: Our findings provide the first evidence that tianeptine can shift atypical brain activation during EF in adults with ASD towards control levels. Future studies should investigate whether this shift in the biology of ASD is maintained after prolonged treatment with tianeptine and whether it improves clinical symptoms.