Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 27(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36114603

RESUMO

SIGNIFICANCE: Skin malformations in dermatology are mostly evaluated subjectively, based on a doctor's experience and visual perception; an option for objective quantitative skin assessment is camera-based spectrally selective diagnostics. Multispectral imaging is a technique capable to provide information about concentrations of the absorbing chromophores and their distribution over the malformation in a noncontact way. Conversion of spectral images into distribution maps of chromophores can be performed by means of the modified Beer-Lambert law. However, such distribution maps represent only single specific cases, therefore, some extensive method for data comparison is needed. AIM: This study aims to develop a more informative approach for identification and characterization of skin malformations using three-dimensional (3D) representation of triple spectral line imaging data. APPROACH: The 3D-representation method is experimentally tested on eight different skin pathology types, including both benign and malignant pathologies; an imaging device ensuring uniform three laser line (448, 532, and 659 nm) illumination is used. Three spectral line images are extracted from a single snapshot RGB image data, with subsequent calculation of attenuation coefficients for each working wavelength at every image pixel and represented as 3D graphs. Skin chromophore content variations in malformations are represented in a similar way. RESULTS: Clinical measurement results for 99 skin pathologies, including basal cell carcinomas, melanoma, dermal nevi, combined nevi, junctional nevi, blue nevi, seborrheic keratosis, and hemangiomas. They are presented as 3D spectral attenuation maps exhibiting specific individual features for each group of pathologies. Along with intensity attenuation maps, 3D maps for content variations of three main skin chromophores (melanin, oxyhemoglobin, and deoxyhemoglobin), calculated in frame of a model based on modified Beer-Lambert law, are also presented. Advantages and disadvantages of the proposed data representation method are discussed. CONCLUSIONS: The described 3D-representation method of triple spectral line imaging data shows promising potential for objective quantitative noncontact diagnosis of skin pathologies.


Assuntos
Nevo , Oxiemoglobinas , Diagnóstico por Imagem/métodos , Humanos , Melaninas/metabolismo , Nevo/diagnóstico por imagem , Oxiemoglobinas/análise , Pele/química
2.
J Biomed Opt ; 27(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35191236

RESUMO

SIGNIFICANCE: Multispectral imaging enables mapping of chromophore content changes in skin neoplasms, which helps to diagnose a pathology. Different types of light sources can be used for the imaging. Design of laser-based illuminators is more complicated and, consequently, they are more expensive than LED-based illuminators. On the other hand, spectral line illumination has the advantage of less complicated calculations, since only the discrete maximum wavelengths need to be considered. Spectral band and spectral line approaches for multispectral skin diagnostics have not been compared so far. This can help to evaluate the accuracy and effectiveness of both approaches. AIM: To compare two specific illumination modalities-spectral band and spectral line illumination-from the point of performance for mapping of in vivo skin chromophores. APPROACH: Three spectral images of the same skin malformations were captured by a smartphone RGB camera with two different add-on illuminators comprising LED emitters and laser emitters, respectively. Five types of benign skin neoplasms were included in our study. Concentrations of skin melanin, oxy- and deoxy-hemoglobin at image pixel groups were calculated using the Beer-Lambert law. RESULTS: Skin chromophore maps and statistical analysis of mean concentrations' changes in the neoplasms compared to the surrounding skin are presented and discussed. The data of the laser emitters led to significantly higher (∼10 times) increase of the oxy-hemoglobin values in vascular neoplasms and much lower deoxy-hemoglobin values, if compared to the data obtained by the LED emitters. CONCLUSIONS: Analysis of the obtained chromophore distribution maps and concentration variations in neoplasms led to conclusion that the spectral line illumination approach is more appropriate for this application. Considering only the peak wavelengths of illumination spectral bands leads to essentially different results if compared to those obtained by spectral line illumination and may cause misinterpretations in the clinical assessment of skin neoplasms.


Assuntos
Iluminação , Pele , Smartphone , Humanos , Melaninas , Oxiemoglobinas , Pele/diagnóstico por imagem , Neoplasias Cutâneas/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA