Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 15: 435-446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711582

RESUMO

Metallic nanowires (NWs) are sensitive to heat treatment and can split into shorter fragments within minutes at temperatures far below the melting point. This process can hinder the functioning of NW-based devices that are subject to relatively mild temperatures. Commonly, heat-induced fragmentation of NWs is attributed to the interplay between heat-enhanced diffusion and Rayleigh instability. In this work, we demonstrated that contact with the substrate plays an important role in the fragmentation process and can strongly affect the outcome of the heat treatment. We deposited silver NWs onto specially patterned silicon wafers so that some NWs were partially suspended over the holes in the substrate. Then, we performed a series of heat-treatment experiments and found that adhered and suspended parts of NWs behave differently under the heat treatment. Moreover, depending on the heat-treatment process, fragmentation in either adhered or suspended parts can dominate. Experiments were supported by finite element method and molecular dynamics simulations.

2.
Ultramicroscopy ; 261: 113949, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38503019

RESUMO

Nanoparticles in microscopy images are usually analyzed qualitatively or manually and there is a need for autonomous quantitative analysis of these objects. In this paper, we present a physics-based computational model for accurate segmentation and geometrical analysis of one-dimensional deformable overlapping objects from microscopy images. This model, named Nano1D, has four steps of preprocessing, segmentation, separating overlapped objects and geometrical measurements. The model is tested on SEM images of Ag and Au nanowire taken from different microscopes, and thermally fragmented Ag nanowires transformed into nanoparticles with different lengths, diameters, and population densities. It successfully segments and analyzes their geometrical characteristics including lengths and average diameter. The function of the algorithm is not undermined by the size, number, density, orientation and overlapping of objects in images. The main strength of the model is shown to be its ability to segment and analyze overlapping objects successfully with more than 99 % accuracy, while current machine learning and computational models suffer from inaccuracy and inability to segment overlapping objects. Benefiting from a graphical user interface, Nano1D can analyze 1D nanoparticles including nanowires, nanotubes, nanorods in addition to other 1D features of microstructures like microcracks, dislocations etc.

3.
Nanomaterials (Basel) ; 13(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37836343

RESUMO

Cr2O3 thin films were grown on a Si (1 0 0) substrate using Cr(thd)3 and O3 by atomic layer deposition (ALD) at substrate temperatures (TG) from 200 to 300 °C. X-ray amorphous films were deposited at a TG ≤ 225 °C, whereas at higher temperatures (TG ≥ 250 °C), the eskolaite phase was observed in the films. The growth rate of the films increased from 0.003 to 0.01 nm/cycle by increasing TG from 200 to 275 °C. The relatively low growth rate of Cr(thd)3-O3 makes it appropriate for the ALD of precisely controllable solid solution-type ternary-component thin films. The Ti-doped Cr2O3 film showed higher hardness (16.7 GPa) compared with that of the undoped film (12.8 GPa) with similar thickness. The band gap values of the pure Cr2O3 corresponding to the indirect transition model showed no dependence on TG; however, doping the Cr2O3 with Ti decreased its band gap energy value from 3.1 to 2.2 eV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA