Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pathog Dis ; 77(1)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30844070

RESUMO

Bacterial biofilm infections often involve aggregates of bacteria heterogeneously distributed throughout a tissue or on a surface (such as an implanted medical device). Identification of a biofilm infection requires direct visualization via microscopy, followed by characterization of the microbial community by culturing or sequencing-based approaches. A sample, therefore, must be divided prior to analysis, often leading to inconsistent results. We demonstrate a combined approach, using scanning electron microscopy and next-generation shotgun sequencing, to visually identify a biofilm and characterize the microbial community, without dividing the sample. A clinical sample recovered from a patient following a dental root-filling procedure was prepared and visualized by scanning electron microscopy. DNA was then extracted from the sample several years later and analyzed by shotgun sequencing. The method was subsequently validated on in vitro cultures of Pseudomonas aeruginosa biofilm. Between 19 and 21 different genera and species were identified in the clinical sample with an estimated relative abundance greater than 1% by two different estimation approaches. Only eight genera identified were not associated with endodontic infections. This provides a proof-of-concept for a dual, microscopy and sequencing-based approach to identify and characterize bacterial biofilms, which could also easily be implemented in other scientific fields.


Assuntos
Bactérias/classificação , Bactérias/genética , Biofilmes , Metagenoma , Metagenômica , Bactérias/ultraestrutura , Biodiversidade , Humanos
2.
Proc Natl Acad Sci U S A ; 115(29): 7557-7562, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967156

RESUMO

Human parvovirus B19 (B19V) is a ubiquitous human pathogen associated with a number of conditions, such as fifth disease in children and arthritis and arthralgias in adults. B19V is thought to evolve exceptionally rapidly among DNA viruses, with substitution rates previously estimated to be closer to those typical of RNA viruses. On the basis of genetic sequences up to ∼70 years of age, the most recent common ancestor of all B19V has been dated to the early 1800s, and it has been suggested that genotype 1, the most common B19V genotype, only started circulating in the 1960s. Here we present 10 genomes (63.9-99.7% genome coverage) of B19V from dental and skeletal remains of individuals who lived in Eurasia and Greenland from ∼0.5 to ∼6.9 thousand years ago (kya). In a phylogenetic analysis, five of the ancient B19V sequences fall within or basal to the modern genotype 1, and five fall basal to genotype 2, showing a long-term association of B19V with humans. The most recent common ancestor of all B19V is placed ∼12.6 kya, and we find a substitution rate that is an order of magnitude lower than inferred previously. Further, we are able to date the recombination event between genotypes 1 and 3 that formed genotype 2 to ∼5.0-6.8 kya. This study emphasizes the importance of ancient viral sequences for our understanding of virus evolution and phylogenetics.


Assuntos
Eritema Infeccioso/genética , Evolução Molecular , Genoma Viral , Genótipo , Parvovirus B19 Humano/genética , Filogenia , Análise de Sequência de DNA , Eritema Infeccioso/história , História do Século XIX , História do Século XX , Humanos
3.
Nature ; 557(7705): 418-423, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743673

RESUMO

Hepatitis B virus (HBV) is a major cause of human hepatitis. There is considerable uncertainty about the timescale of its evolution and its association with humans. Here we present 12 full or partial ancient HBV genomes that are between approximately 0.8 and 4.5 thousand years old. The ancient sequences group either within or in a sister relationship with extant human or other ape HBV clades. Generally, the genome properties follow those of modern HBV. The root of the HBV tree is projected to between 8.6 and 20.9 thousand years ago, and we estimate a substitution rate of 8.04 × 10-6-1.51 × 10-5 nucleotide substitutions per site per year. In several cases, the geographical locations of the ancient genotypes do not match present-day distributions. Genotypes that today are typical of Africa and Asia, and a subgenotype from India, are shown to have an early Eurasian presence. The geographical and temporal patterns that we observe in ancient and modern HBV genotypes are compatible with well-documented human migrations during the Bronze and Iron Ages1,2. We provide evidence for the creation of HBV genotype A via recombination, and for a long-term association of modern HBV genotypes with humans, including the discovery of a human genotype that is now extinct. These data expose a complexity of HBV evolution that is not evident when considering modern sequences alone.


Assuntos
Evolução Molecular , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepatite B/virologia , Filogenia , África , Animais , Ásia , Europa (Continente) , Genótipo , Vírus da Hepatite B/classificação , História Antiga , História Medieval , Hominidae/virologia , Migração Humana/história , Humanos , Recombinação Genética
4.
Nature ; 557(7705): 369-374, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743675

RESUMO

For thousands of years the Eurasian steppes have been a centre of human migrations and cultural change. Here we sequence the genomes of 137 ancient humans (about 1× average coverage), covering a period of 4,000 years, to understand the population history of the Eurasian steppes after the Bronze Age migrations. We find that the genetics of the Scythian groups that dominated the Eurasian steppes throughout the Iron Age were highly structured, with diverse origins comprising Late Bronze Age herders, European farmers and southern Siberian hunter-gatherers. Later, Scythians admixed with the eastern steppe nomads who formed the Xiongnu confederations, and moved westward in about the second or third century BC, forming the Hun traditions in the fourth-fifth century AD, and carrying with them plague that was basal to the Justinian plague. These nomads were further admixed with East Asian groups during several short-term khanates in the Medieval period. These historical events transformed the Eurasian steppes from being inhabited by Indo-European speakers of largely West Eurasian ancestry to the mostly Turkic-speaking groups of the present day, who are primarily of East Asian ancestry.


Assuntos
Povo Asiático/genética , Genoma Humano/genética , Pradaria , Filogenia , População Branca/genética , Ásia/etnologia , Europa (Continente)/etnologia , Fazendeiros/história , História Antiga , Migração Humana/história , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA