Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
PLoS Pathog ; 20(2): e1012007, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38386661

RESUMO

Smallpox was the most rampant infectious disease killer of the 20th century, yet much remains unknown about the pathogenesis of the variola virus. Using archived tissue from a study conducted at the Centers for Disease Control and Prevention we characterized pathology in 18 cynomolgus macaques intravenously infected with the Harper strain of variola virus. Six macaques were placebo-treated controls, six were tecovirimat-treated beginning at 2 days post-infection, and six were tecovirimat-treated beginning at 4 days post-infection. All macaques were treated daily until day 17. Archived tissues were interrogated using immunohistochemistry, in situ hybridization, immunofluorescence, and electron microscopy. Gross lesions in three placebo-treated animals that succumbed to infection primarily consisted of cutaneous vesicles, pustules, or crusts with lymphadenopathy. The only gross lesions noted at the conclusion of the study in the three surviving placebo-treated and the Day 4 treated animals consisted of resolving cutaneous pox lesions. No gross lesions attributable to poxviral infection were present in the Day 2 treated macaques. Histologic lesions in three placebo-treated macaques that succumbed to infection consisted of proliferative and necrotizing dermatitis with intracytoplasmic inclusion bodies and lymphoid depletion. The only notable histologic lesion in the Day 4 treated macaques was resolving dermatitis; no notable lesions were seen in the Day 2 treated macaques. Variola virus was detected in all three placebo-treated animals that succumbed to infection prior to the study's conclusion by all utilized methods (IHC, ISH, IFA, EM). None of the three placebo-treated animals that survived to the end of the study nor the animals in the two tecovirimat treatment groups showed evidence of variola virus by these methods. Our findings further characterize variola lesions in the macaque model and describe new molecular methods for variola detection.


Assuntos
Dermatite , Varíola , Vírus da Varíola , Animais , Benzamidas , Isoindóis , Macaca fascicularis , Varíola/tratamento farmacológico , Varíola/patologia , Estados Unidos
2.
J Infect Dis ; 229(Supplement_2): S265-S274, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995376

RESUMO

Variola virus (VARV), the etiological agent of smallpox, had enormous impacts on global health prior to its eradication. In the absence of global vaccination programs, mpox virus (MPXV) has become a growing public health threat that includes endemic and nonendemic regions across the globe. While human mpox resembles smallpox in clinical presentation, there are considerable knowledge gaps regarding conserved molecular pathogenesis between these 2 orthopoxviruses. Thus, we sought to compare MPXV and VARV infections in human monocytes through kinome analysis. We performed a longitudinal analysis of host cellular responses to VARV infection in human monocytes as well as a comparative analysis to clade I MPXV-mediated responses. While both viruses elicited strong activation of cell responses early during infection as compared to later time points, several key differences in cell signaling events were identified and validated. These observations will help in the design and development of panorthopoxvirus therapeutics.


Assuntos
Orthopoxvirus , Varíola , Vírus da Varíola , Humanos , Monkeypox virus , Monócitos
4.
J Gen Virol ; 104(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37195882

RESUMO

Poxviridae is a family of enveloped, brick-shaped or ovoid viruses. The genome is a linear molecule of dsDNA (128-375 kbp) with covalently closed ends. The family includes the sub-families Entomopoxvirinae, whose members have been found in four orders of insects, and Chordopoxvirinae, whose members are found in mammals, birds, reptiles and fish. Poxviruses are important pathogens in various animals, including humans, and typically result in the formation of lesions, skin nodules, or disseminated rash. Infections can be fatal. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Poxviridae, which is available at ictv.global/report/poxviridae.


Assuntos
Poxviridae , Animais , Humanos , Poxviridae/genética , Peixes , Aves , Mamíferos , Répteis , Genoma Viral , Replicação Viral , Vírion
5.
Pathogens ; 12(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36986317

RESUMO

Monkeypox virus (MPXV), a member of the Orthopoxvirus (OPXV) genus, is a zoonotic virus, endemic to central and western Africa that can cause smallpox-like symptoms in humans with fatal outcomes in up to 15% of patients. The incidence of MPXV infections in the Democratic Republic of the Congo, where the majority of cases have occurred historically, has been estimated to have increased as much as 20-fold since the end of smallpox vaccination in 1980. Considering the risk global travel carries for future disease outbreaks, accurate epidemiological surveillance of MPXV is warranted as demonstrated by the recent Mpox outbreak, where the majority of cases were occurring in non-endemic areas. Serological differentiation between childhood vaccination and recent infection with MPXV or other OPXVs is difficult due to the high level of conservation within OPXV proteins. Here, a peptide-based serological assay was developed to specifically detect exposure to MPXV. A comparative analysis of immunogenic proteins across human OPXVs identified a large subset of proteins that could potentially be specifically recognized in response to a MPXV infection. Peptides were chosen based upon MPXV sequence specificity and predicted immunogenicity. Peptides individually and combined were screened in an ELISA against serum from well-characterized Mpox outbreaks, vaccinee sera, and smallpox sera collected prior to eradication. One peptide combination was successful with ~86% sensitivity and ~90% specificity. The performance of the assay was assessed against the OPXV IgG ELISA in the context of a serosurvey by retrospectively screening a set of serum specimens from the region in Ghana believed to have harbored the MPXV-infected rodents involved in the 2003 United States outbreak.

6.
MMWR Morb Mortal Wkly Rep ; 72(9): 232-243, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862595

RESUMO

Monkeypox (mpox) is a disease caused by infection with Monkeypox virus (MPXV), an Orthopoxvirus (OPXV) in the same genus as Variola virus, which causes smallpox. During 2022, a global outbreak involving mpox clade IIb was recognized, primarily among gay, bisexual, and other men who have sex with men.* Most affected patients have been immunocompetent and experienced ≤10 rash lesions (1). CDC has recommended supportive care including pain control.† However, some patients have experienced severe mpox manifestations, including ocular lesions, neurologic complications, myopericarditis, complications associated with mucosal (oral, rectal, genital, and urethral) lesions, and uncontrolled viral spread due to moderate or severe immunocompromise, particularly advanced HIV infection (2). Therapeutic medical countermeasures (MCMs) are Food and Drug Administration (FDA)-regulated drugs and biologics that are predominantly stockpiled by the U.S. government; MCMs developed for smallpox preparedness or shown to be effective against other OPXVs (i.e., tecovirimat, brincidofovir, cidofovir, trifluridine ophthalmic solution, and vaccinia immune globulin intravenous [VIGIV]) have been used to treat severe mpox. During May 2022-January 2023, CDC provided more than 250 U.S. mpox consultations. This report synthesizes data from animal models, MCM use for human cases of related OPXV, unpublished data, input from clinician experts, and experience during consultations (including follow-up) to provide interim clinical treatment considerations. Randomized controlled trials and other carefully controlled research studies are needed to evaluate the effectiveness of MCMs for treating human mpox. Until data gaps are filled, the information presented in this report represents the best available information concerning the effective use of MCMs and should be used to guide decisions about MCM use for mpox patients.


Assuntos
Infecções por HIV , Mpox , Minorias Sexuais e de Gênero , Varíola , Animais , Masculino , Humanos , Homossexualidade Masculina
7.
MMWR Morb Mortal Wkly Rep ; 71(40): 1278-1282, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36201401

RESUMO

Human monkeypox is caused by Monkeypox virus (MPXV), an Orthopoxvirus, previously rare in the United States (1). The first U.S. case of monkeypox during the current outbreak was identified on May 17, 2022 (2). As of September 28, 2022, a total of 25,341 monkeypox cases have been reported in the United States.* The outbreak has disproportionately affected gay, bisexual, and other men who have sex with men (MSM) (3). JYNNEOS vaccine (Modified Vaccinia Ankara vaccine, Bavarian Nordic), administered subcutaneously as a 2-dose (0.5 mL per dose) series with doses administered 4 weeks apart, was approved by the Food and Drug Administration (FDA) in 2019 to prevent smallpox and monkeypox infection (4). U.S. distribution of JYNNEOS vaccine as postexposure prophylaxis (PEP) for persons with known exposures to MPXV began in May 2022. A U.S. national vaccination strategy† for expanded PEP, announced on June 28, 2022, recommended subcutaneous vaccination of persons with known or presumed exposure to MPXV, broadening vaccination eligibility. FDA emergency use authorization (EUA) of intradermal administration of 0.1 mL of JYNNEOS on August 9, 2022, increased vaccine supply (5). As of September 28, 2022, most vaccine has been administered as PEP or expanded PEP. Because of the limited amount of time that has elapsed since administration of initial vaccine doses, as of September 28, 2022, relatively few persons in the current outbreak have completed the recommended 2-dose series.§ To examine the incidence of monkeypox among persons who were unvaccinated and those who had received ≥1 JYNNEOS vaccine dose, 5,402 reported monkeypox cases occurring among males¶ aged 18-49 years during July 31-September 3, 2022, were analyzed by vaccination status across 32 U.S. jurisdictions.** Average monkeypox incidence (cases per 100,000) among unvaccinated persons was 14.3 (95% CI = 5.0-41.0) times that among persons who received 1 dose of JYNNEOS vaccine ≥14 days earlier. Monitoring monkeypox incidence by vaccination status in timely surveillance data might provide early indications of vaccine-related protection that can be confirmed through other well-controlled vaccine effectiveness studies. This early finding suggests that a single dose of JYNNEOS vaccine provides some protection against monkeypox infection. The degree and durability of such protection is unknown, and it is recommended that people who are eligible for monkeypox vaccination receive the complete 2-dose series.


Assuntos
Mpox , Minorias Sexuais e de Gênero , Vacina Antivariólica , Homossexualidade Masculina , Humanos , Incidência , Masculino , Mpox/epidemiologia , Mpox/prevenção & controle , Estados Unidos/epidemiologia
8.
MMWR Morb Mortal Wkly Rep ; 71(37): 1190-1195, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36107794

RESUMO

Currently, no Food and Drug Administration (FDA)-approved treatments for human monkeypox are available. Tecovirimat (Tpoxx), however, is an antiviral drug that has demonstrated efficacy in animal studies and is FDA-approved for treating smallpox. Use of tecovirimat for treatment of monkeypox in the United States is permitted only through an FDA-regulated Expanded Access Investigational New Drug (EA-IND) mechanism. CDC holds a nonresearch EA-IND protocol that facilitates access to and use of tecovirimat for treatment of monkeypox.§ The protocol includes patient treatment and adverse event reporting forms to monitor safety and ensure intended clinical use in accordance with FDA EA-IND requirements. The current multinational monkeypox outbreak, first detected in a country where Monkeypox virus infection is not endemic in May 2022, has predominantly affected gay, bisexual, and other men who have sex with men (MSM) (1,2). To describe characteristics of persons treated with tecovirimat for Monkeypox virus infection, demographic and clinical data abstracted from available tecovirimat EA-IND treatment forms were analyzed. As of August 20, 2022, intake and outcome forms were available for 549 and 369 patients, respectively; 97.7% of patients were men, with a median age of 36.5 years. Among patients with available data, 38.8% were reported to be non-Hispanic White (White) persons, 99.8% were prescribed oral tecovirimat, and 93.1% were not hospitalized. Approximately one half of patients with Monkeypox virus infection who received tecovirimat were living with HIV infection. The median interval from initiation of tecovirimat to subjective improvement was 3 days and did not differ by HIV infection status. Adverse events were reported in 3.5% of patients; all but one adverse event were nonserious. These data support the continued access to and treatment with tecovirimat for patients with or at risk for severe disease in the ongoing monkeypox outbreak.


Assuntos
Infecções por HIV , Mpox , Minorias Sexuais e de Gênero , Adulto , Animais , Antivirais/uso terapêutico , Drogas em Investigação/uso terapêutico , Feminino , Infecções por HIV/tratamento farmacológico , Homossexualidade Masculina , Humanos , Masculino , Mpox/tratamento farmacológico , Mpox/epidemiologia , Monkeypox virus , Estados Unidos
9.
MMWR Morb Mortal Wkly Rep ; 71(14): 509-516, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35389974

RESUMO

Monkeypox is a rare, sometimes life-threatening zoonotic infection that occurs in west and central Africa. It is caused by Monkeypox virus, an orthopoxvirus similar to Variola virus (the causative agent of smallpox) and Vaccinia virus (the live virus component of orthopoxvirus vaccines) and can spread to humans. After 39 years without detection of human disease in Nigeria, an outbreak involving 118 confirmed cases was identified during 2017-2018 (1); sporadic cases continue to occur. During September 2018-May 2021, six unrelated persons traveling from Nigeria received diagnoses of monkeypox in non-African countries: four in the United Kingdom and one each in Israel and Singapore. In July 2021, a man who traveled from Lagos, Nigeria, to Dallas, Texas, became the seventh traveler to a non-African country with diagnosed monkeypox. Among 194 monitored contacts, 144 (74%) were flight contacts. The patient received tecovirimat, an antiviral for treatment of orthopoxvirus infections, and his home required large-scale decontamination. Whole genome sequencing showed that the virus was consistent with a strain of Monkeypox virus known to circulate in Nigeria, but the specific source of the patient's infection was not identified. No epidemiologically linked cases were reported in Nigeria; no contact received postexposure prophylaxis (PEP) with the orthopoxvirus vaccine ACAM2000.


Assuntos
Mpox , Humanos , Masculino , Mpox/diagnóstico , Mpox/epidemiologia , Mpox/prevenção & controle , Monkeypox virus/genética , Nigéria/epidemiologia , Texas/epidemiologia
10.
MMWR Morb Mortal Wkly Rep ; 71(8): 290-292, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35202354

RESUMO

On December 19, 2019, the Food and Drug Administration (FDA) approved rVSVΔG-ZEBOV-GP Ebola vaccine (ERVEBO, Merck) for the prevention of Ebola virus disease (EVD) caused by infection with Ebola virus, species Zaire ebolavirus, in adults aged ≥18 years. In February 2020, the Advisory Committee on Immunization Practices (ACIP) recommended preexposure vaccination with ERVEBO for adults aged ≥18 years in the United States who are at highest risk for potential occupational exposure to Ebola virus because they are responding to an outbreak of EVD, work as health care personnel at federally designated Ebola treatment centers in the United States, or work as laboratorians or other staff members at biosafety level 4 facilities in the United States (1).


Assuntos
Vacinas contra Ebola/administração & dosagem , Doença pelo Vírus Ebola/prevenção & controle , Exposição Ocupacional/prevenção & controle , Vacinação , Adulto , Comitês Consultivos , Centers for Disease Control and Prevention, U.S. , Pessoal de Saúde , Diretrizes para o Planejamento em Saúde , Humanos , Pessoal de Laboratório , Estados Unidos/epidemiologia
11.
MMWR Recomm Rep ; 70(1): 1-12, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33417593

RESUMO

This report summarizes the recommendations of the Advisory Committee on Immunization Practices (ACIP) for use of the rVSVΔG-ZEBOV-GP Ebola vaccine (Ervebo) in the United States. The vaccine contains rice-derived recombinant human serum albumin and live attenuated recombinant vesicular stomatitis virus (VSV) in which the gene encoding the glycoprotein of VSV was replaced with the gene encoding the glycoprotein of Ebola virus species Zaire ebolavirus. Persons with a history of severe allergic reaction (e.g., anaphylaxis) to rice protein should not receive Ervebo. This is the first and only vaccine currently licensed by the Food and Drug Administration for the prevention of Ebola virus disease (EVD). These guidelines will be updated based on availability of new data or as new vaccines are licensed to protect against EVD.ACIP recommends preexposure vaccination with Ervebo for adults aged ≥18 years in the U.S. population who are at highest risk for potential occupational exposure to Ebola virus species Zaire ebolavirus because they are responding to an outbreak of EVD, work as health care personnel at federally designated Ebola treatment centers in the United States, or work as laboratorians or other staff at biosafety level 4 facilities in the United States. Recommendations for use of Ervebo in additional populations at risk for exposure and other settings will be considered and discussed by ACIP in the future.


Assuntos
Vacinas contra Ebola/administração & dosagem , Doença pelo Vírus Ebola/prevenção & controle , Adulto , Comitês Consultivos , Doença pelo Vírus Ebola/epidemiologia , Humanos , Estados Unidos/epidemiologia , United States Food and Drug Administration
13.
Vaccines (Basel) ; 8(3)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698399

RESUMO

The protection provided by smallpox vaccines when used after exposure to Orthopoxviruses is poorly understood. Postexposu re administration of 1st generation smallpox vaccines was effective during eradication. However, historical epidemiological reports and animal studies on postexposure vaccination are difficult to extrapolate to today's populations, and 2nd and 3rd generation vaccines, developed after eradication, have not been widely tested in postexposure vaccination scenarios. In addition to concerns about preparedness for a potential malevolent reintroduction of variola virus, humans are becoming increasingly exposed to naturally occurring zoonotic orthopoxviruses and, following these exposures, disease severity is worse in individuals who never received smallpox vaccination. This study investigated whether postexposure vaccination of prairie dogs with 2nd and 3rd generation smallpox vaccines was protective against monkeypox disease in four exposure scenarios. We infected animals with monkeypox virus at doses of 104 pfu (2× LD50) or 106 pfu (170× LD50) and vaccinated the animals with IMVAMUNE® or ACAM2000® either 1 or 3 days after challenge. Our results indicated that postexposure vaccination protected the animals to some degree from the 2× LD50, but not the 170× LD5 challenge. In the 2× LD50 challenge, we also observed that administration of vaccine at 1 day was more effective than administration at 3 days postexposure for IMVAMUNE®, but ACAM2000® was similarly effective at either postexposure vaccination time-point. The effects of postexposure vaccination and correlations with survival of total and neutralizing antibody responses, protein targets, take formation, weight loss, rash burden, and viral DNA are also presented.

14.
Virology ; 544: 55-63, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32174514

RESUMO

Historic observations suggest that survivors of smallpox maintained lifelong immunity and protection to subsequent infection compared to vaccinated individuals. Although protective immunity by vaccination using a related virus (vaccinia virus (VACV) strains) was the key for smallpox eradication, it does not uniformly provide long term, or lifelong protective immunity (Heiner et al., 1971). To determine differences in humoral immune responses, mice were inoculated with VACV either systemically, using intranasal inoculation (IN), or locally by an intradermal (ID) route. We hypothesized that sub-lethal IN infections may mimic systemic or naturally occurring infection and lead to an immunodominance reaction, in contrast to localized ID immunization. The results demonstrated systemic immunization through an IN route led to enhanced adaptive immunity to VACV-expressed protein targets both in magnitude and in diversity when compared to an ID route using a VACV protein microarray. In addition, cytokine responses, assessed using a Luminex® mouse cytokine multiplex kit, following IN infection was greater than that stemming from ID infection. Overall, the results suggest that the route of immunization (or infection) influences antibody responses. The greater magnitude and diversity of response in systemic infection provides indirect evidence for anecdotal observations made during the smallpox era that survivors maintain lifelong protection. These findings also suggest that systemic or disseminated host immune induction may result in a superior response, that may influence the magnitude of, as well as duration of protective responses.


Assuntos
Imunidade Humoral , Vaccinia virus/imunologia , Vacínia/imunologia , Imunidade Adaptativa , Administração Intranasal , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Injeções Intradérmicas , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Vacínia/virologia
15.
N Engl J Med ; 381(20): 1962-1963, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31722158
16.
PLoS One ; 14(8): e0220049, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31369576

RESUMO

BACKGROUND: This prospective cohort investigation analyzed the long-term functional and neurologic outcomes of patients with Zika virus-associated Guillain-Barré syndrome (GBS) in Barranquilla, Colombia. METHODS: Thirty-four Zika virus-associated GBS cases were assessed a median of 17 months following acute GBS illness. We assessed demographics, results of Overall Disability Sum Scores (ODSS), Hughes Disability Score (HDS), Zung Depression Scale (ZDS), and Health Related Quality of Life (HRQL) questionnaires; and compared outcomes indices with a normative sample of neighborhood-selected control subjects in Barranquilla without GBS. RESULTS: Median age at time of acute neurologic onset was 49 years (range, 10-80); 17 (50%) were male. No deaths occurred. At long-term follow-up, 25 (73%) patients had a HDS 0-1, indicating complete / near complete recovery. Among the group, HDS (mean 1.4, range 0-4), ODSS (mean 1.9, range 0-9) and ZDS score (mean 34.4, range 20-56) indicated mild / moderate ongoing disability. Adjusting for age and sex, Zika virus-associated GBS cases were similar to a population comparison group (n = 368) in Barranquilla without GBS in terms of prevalence of physical or mental health complaints, though GBS patients were more likely to have an ODSS of ≥ 1 (OR 8.8, 95% CI 3.2-24.5) and to suffer from moderate / moderate-severe depression (OR 3.89, 95% CI 1.23-11.17) than the comparison group. CONCLUSIONS: Long-term outcomes of Zika virus-associated GBS are consistent with those associated with other antecedent antigenic stimuli in terms of mortality and ongoing long-term morbidity, as published in the literature. Persons with Zika virus-associated GBS more frequently reported disability and depression after approximately one year compared with those without GBS.


Assuntos
Depressão/epidemiologia , Síndrome de Guillain-Barré/etiologia , Qualidade de Vida , Infecção por Zika virus/complicações , Zika virus/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Depressão/diagnóstico , Surtos de Doenças , Feminino , Seguimentos , Síndrome de Guillain-Barré/epidemiologia , Síndrome de Guillain-Barré/patologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Estados Unidos/epidemiologia , Adulto Jovem , Infecção por Zika virus/virologia
17.
BMC Pharmacol Toxicol ; 19(1): 80, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514402

RESUMO

BACKGROUND: Several tyrosine kinase inhibitors (TKIs) developed as anti-cancer drugs, also have anti-viral activity due to their ability to disrupt productive replication and dissemination in infected cells. Consequently, such drugs are attractive candidates for "repurposing" as anti-viral agents. However, clinical evaluation of therapeutics against infectious agents associated with high mortality, but low or infrequent incidence, is often unfeasible. The United States Food and Drug Administration formulated the "Animal Rule" to facilitate use of validated animal models for conducting anti-viral efficacy studies. METHODS: To enable such efficacy studies of two clinically approved TKIs, nilotinib, and imatinib, we first conducted comprehensive pharmacokinetic (PK) studies in relevant rodent and non-rodent animal models. PK of these agents following intravenous and oral dosing were evaluated in C57BL/6 mice, prairie dogs, guinea pigs and Cynomolgus monkeys. Plasma samples were analyzed using an LC-MS/MS method. Secondarily, we evaluated the utility of allometry-based inter-species scaling derived from previously published data to predict the PK parameters, systemic clearance (CL) and the steady state volume of distribution (Vss) of these two drugs in prairie dogs, an animal model not tested thus far. RESULTS: Marked inter-species variability in PK parameters and resulting oral bioavailability was observed. In general, elimination half-lives of these agents in mice and guinea pigs were much shorter (1-3 h) relative to those in larger species such as prairie dogs and monkeys. The longer nilotinib elimination half-life in prairie dogs (i.v., 6.5 h and oral, 7.5 h), facilitated multiple dosing PK and safety assessment. The allometry-based predicted values of the Vss and CL were within 2.0 and 2.5-fold, respectively, of the observed values. CONCLUSIONS: Our results suggest that prairie dogs and monkeys may be suitable rodent and non-rodent species to perform further efficacy testing of these TKIs against orthopoxvirus infections. The use of rodent models such as C57BL/6 mice and guinea pigs for assessing pre-clinical anti-viral efficacy of these two TKIs may be limited due to short elimination and/or low oral bioavailability. Allometry-based correlations, derived from existing literature data, may provide initial estimates, which may serve as a useful guide for pre-clinical PK studies in untested animal models.


Assuntos
Antineoplásicos/farmacocinética , Antivirais/farmacocinética , Mesilato de Imatinib/farmacocinética , Proteínas Tirosina Quinases/farmacocinética , Pirimidinas/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Feminino , Cobaias , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Sciuridae
19.
MMWR Morb Mortal Wkly Rep ; 67(10): 306-310, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29543790

RESUMO

The recent apparent increase in human monkeypox cases across a wide geographic area, the potential for further spread, and the lack of reliable surveillance have raised the level of concern for this emerging zoonosis. In November 2017, the World Health Organization (WHO), in collaboration with CDC, hosted an informal consultation on monkeypox with researchers, global health partners, ministries of health, and orthopoxvirus experts to review and discuss human monkeypox in African countries where cases have been recently detected and also identify components of surveillance and response that need improvement. Endemic human monkeypox has been reported from more countries in the past decade than during the previous 40 years. Since 2016, confirmed cases of monkeypox have occurred in Central African Republic, Democratic Republic of the Congo, Liberia, Nigeria, Republic of the Congo, and Sierra Leone and in captive chimpanzees in Cameroon. Many countries with endemic monkeypox lack recent experience and specific knowledge about the disease to detect cases, treat patients, and prevent further spread of the virus. Specific improvements in surveillance capacity, laboratory diagnostics, and infection control measures are needed to launch an efficient response. Further, gaps in knowledge about the epidemiology and ecology of the virus need to be addressed to design, recommend, and implement needed prevention and control measures.


Assuntos
Doenças Transmissíveis Emergentes , Mpox/epidemiologia , África Central/epidemiologia , África Ocidental/epidemiologia , Humanos
20.
Am J Trop Med Hyg ; 96(2): 405-410, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-27994107

RESUMO

Monkeypox virus (MPXV), a zoonotic orthopoxvirus (OPX), is endemic in the Democratic Republic of Congo (DRC). Currently, diagnostic assays for human monkeypox (MPX) focus on real-time quantitative polymerase chain reaction (PCR) assays, which are typically performed in sophisticated laboratory settings. Herein, we evaluated the accuracy and utility of a multiplex MPX assay using the GeneXpert platform, a portable rapid diagnostic device that may serve as a point-of-care test to diagnose infections in endemic areas. The multiplex MPX/OPX assay includes a MPX-specific PCR test, OPX-generic PCR test, and an internal control PCR test. In total, 164 diagnostic specimens (50 crusts and 114 vesicular swabs) were collected from suspected MPX cases in Tshuapa Province, DRC, under national surveillance guidelines. The specimens were tested with the GeneXpert MPX/OPX assay and an OPX PCR assay at the Institut National de Recherche Biomedicale (INRB) in Kinshasa. Aliquots of each specimen were tested in parallel with a MPX-specific PCR assay at the Centers for Disease Control and Prevention. The results of the MPX PCR were used as the gold standard for all analyses. The GeneXpert MPX/OPX assay performed at INRB had a sensitivity of 98.8% and specificity of 100%. The GeneXpert assay performed well with both crust and vesicle samples. The GeneXpert MPX/OPX test incorporates a simple methodology that performs well in both laboratory and field conditions, suggesting its viability as a diagnostic platform that may expand and expedite current MPX detection capabilities.


Assuntos
Monkeypox virus/genética , Mpox/diagnóstico , Mpox/genética , Reação em Cadeia da Polimerase/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , República Democrática do Congo/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mpox/epidemiologia , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA