Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0337223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38466127

RESUMO

Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Vírus da Febre Aftosa/metabolismo , Peptídeo Hidrolases/metabolismo , Sorogrupo , Febre Aftosa/tratamento farmacológico , Febre Aftosa/prevenção & controle , Endopeptidases/metabolismo , Proteases Virais 3C , Antivirais/farmacologia
2.
mBio ; 15(2): e0287823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38126789

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic betacoronaviruses that continue to have a significant impact on public health. Timely development and introduction of vaccines and antivirals against SARS-CoV-2 into the clinic have substantially mitigated the burden of COVID-19. However, a limited or lacking therapeutic arsenal for SARS-CoV-2 and MERS-CoV infections, respectively, calls for an expanded and diversified portfolio of antivirals against these coronavirus infections. In this report, we examined the efficacy of two potent 3CLpro inhibitors, 5d and 11d, in fatal animal models of SARS-CoV-2 and MERS-CoV to demonstrate their broad-spectrum activity against both viral infections. These compounds significantly increased the survival of mice in both models when treatment started 1 day post infection compared to no treatment which led to 100% fatality. Especially, the treatment with compound 11d resulted in 80% and 90% survival in SARS-CoV-2 and MERS-CoV-infected mice, respectively. Amelioration of lung viral load and histopathological changes in treated mice correlated well with improved survival in both infection models. Furthermore, compound 11d exhibited significant antiviral activities in K18-hACE2 mice infected with SARS-CoV-2 Omicron subvariant XBB.1.16. The results suggest that these are promising candidates for further development as broad-spectrum direct-acting antivirals against highly virulent human coronaviruses.IMPORTANCEHuman coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) continue to have a significant impact on public health. A limited or lacking therapeutic arsenal for SARS-CoV-2 and MERS-CoV infections calls for an expanded and diversified portfolio of antivirals against these coronavirus infections. We have previously reported a series of small-molecule 3C-like protease (3CLpro) inhibitors against human coronaviruses. In this report, we demonstrated the in vivo efficacy of 3CLpro inhibitors for their broad-spectrum activity against both SARS-CoV-2 and MERS-CoV infections using the fatal animal models. The results suggest that these are promising candidates for further development as broad-spectrum direct-acting antivirals against highly virulent human coronaviruses.


Assuntos
COVID-19 , Hepatite C Crônica , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Camundongos , Animais , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Modelos Animais de Doenças
3.
Eur J Med Chem ; 254: 115376, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080108

RESUMO

The high morbidity and mortality associated with SARS-CoV-2 infection, the etiological agent of COVID-19, has had a major impact on global public health. Significant progress has been made in the development of an array of vaccines and biologics, however, the emergence of SARS-CoV-2 variants and breakthrough infections are an ongoing major concern. Furthermore, there is an existing paucity of small-molecule host and virus-directed therapeutics and prophylactics that can be used to counter the spread of SARS-CoV-2, and any emerging and re-emerging coronaviruses. We describe herein our efforts to address this urgent need by focusing on the structure-guided design of potent broad-spectrum inhibitors of SARS-CoV-2 3C-like protease (3CLpro or Main protease), an enzyme essential for viral replication. The inhibitors exploit the directional effects associated with the presence of a gem-dimethyl group that allow the inhibitors to optimally interact with the S4 subsite of the enzyme. Several compounds were found to potently inhibit SARS-CoV-2 and MERS-CoV 3CL proteases in biochemical and cell-based assays. Specifically, the EC50 values of aldehyde 1c and its corresponding bisulfite adduct 1d against SARS-CoV-2 were found to be 12 and 10 nM, respectively, and their CC50 values were >50 µM. Furthermore, deuteration of these compounds yielded compounds 2c/2d with EC50 values 11 and 12 nM, respectively. Replacement of the aldehyde warhead with a nitrile (CN) or an α-ketoamide warhead or its corresponding bisulfite adduct yielded compounds 1g, 1eand1f with EC50 values 60, 50 and 70 nM, respectively. High-resolution cocrystal structures have identified the structural determinants associated with the binding of the inhibitors to the active site of the enzyme and, furthermore, have illuminated the mechanism of action of the inhibitors. Overall, the high Safety Index (SI) (SI=CC50/EC50) displayed by these compounds suggests that they are well-suited to conducting further preclinical studies.


Assuntos
COVID-19 , Hepatite C Crônica , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/química , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Cisteína Endopeptidases/metabolismo
4.
ACS Pharmacol Transl Sci ; 6(1): 181-194, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36654747

RESUMO

The advent of SARS-CoV-2, the causative agent of COVID-19, and its worldwide impact on global health, have provided the impetus for the development of effective countermeasures that can be deployed against the virus, including vaccines, monoclonal antibodies, and direct-acting antivirals (DAAs). Despite these efforts, the current paucity of DAAs has created an urgent need for the creation of an enhanced and diversified portfolio of broadly acting agents with different mechanisms of action that can effectively abrogate viral infection. SARS-CoV-2 3C-like protease (3CLpro), an enzyme essential for viral replication, is a validated target for the discovery of SARS-CoV-2 therapeutics. In this report, we describe the structure-guided utilization of the cyclopropane moiety in the design of highly potent inhibitors of SARS-CoV-2 3CLpro, SARS-CoV-1 3CLpro, and MERS-CoV 3CLpro. High-resolution cocrystal structures were used to identify the structural determinants associated with the binding of the inhibitors to the active site of the enzyme and unravel the mechanism of action. Aldehydes 5c and 11c inhibited SARS-CoV-2 replication with EC50 values of 12 and 11 nM, respectively. Furthermore, the corresponding aldehyde bisulfite adducts 5d and 11d were equipotent with EC50 values of 13 and 12 nM, respectively. The safety index (SI) values for compounds 5c / 11c and 5d / 11d ranged between 7692 and 9090. Importantly, aldehydes 5c / 11c and bisulfite adducts 5d / 11d potently inhibited MERS-CoV 3CLpro with IC50 values of 80 and 120 nM, and 70 and 70 nM, respectively. Likewise, compounds 5c / 11c and 5d / 11d inhibited SARS-CoV-1 with IC50 values of 960 and 350 nM and 790 and 240 nM, respectively. Taken together, these studies suggest that the inhibitors described herein have low cytotoxicity and high potency and are promising candidates for further development as broad-spectrum direct-acting antivirals against highly pathogenic coronaviruses.

5.
J Med Chem ; 65(11): 7818-7832, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35638577

RESUMO

The worldwide impact of the ongoing COVID-19 pandemic on public health has made imperative the discovery and development of direct-acting antivirals aimed at targeting viral and/or host targets. SARS-CoV-2 3C-like protease (3CLpro) has emerged as a validated target for the discovery of SARS-CoV-2 therapeutics because of the pivotal role it plays in viral replication. We describe herein the structure-guided design of highly potent inhibitors of SARS-CoV-2 3CLpro that incorporate in their structure novel spirocyclic design elements aimed at optimizing potency by accessing new chemical space. Inhibitors of both SARS-CoV-2 3CLpro and MERS-CoV 3CLpro that exhibit nM potency and high safety indices have been identified. The mechanism of action of the inhibitors and the structural determinants associated with binding were established using high-resolution cocrystal structures.


Assuntos
COVID-19 , Hepatite C Crônica , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Humanos , Pandemias , Peptídeo Hidrolases , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
6.
J Med Chem ; 64(24): 17846-17865, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34865476

RESUMO

The COVID-19 pandemic is having a major impact on public health worldwide, and there is an urgent need for the creation of an armamentarium of effective therapeutics, including vaccines, biologics, and small-molecule therapeutics, to combat SARS-CoV-2 and emerging variants. Inspection of the virus life cycle reveals multiple viral- and host-based choke points that can be exploited to combat the virus. SARS-CoV-2 3C-like protease (3CLpro), an enzyme essential for viral replication, is an attractive target for therapeutic intervention, and the design of inhibitors of the protease may lead to the emergence of effective SARS-CoV-2-specific antivirals. We describe herein the results of our studies related to the application of X-ray crystallography, the Thorpe-Ingold effect, deuteration, and stereochemistry in the design of highly potent and nontoxic inhibitors of SARS-CoV-2 3CLpro.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/metabolismo , Chlorocebus aethiops , Proteases 3C de Coronavírus/metabolismo , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/metabolismo , Desenho de Fármacos , Células HEK293 , Humanos , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ligação Proteica , SARS-CoV-2/enzimologia , Estereoisomerismo , Células Vero
7.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34210738

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to be a serious global public health threat. The 3C-like protease (3CLpro) is a virus protease encoded by SARS-CoV-2, which is essential for virus replication. We have previously reported a series of small-molecule 3CLpro inhibitors effective for inhibiting replication of human coronaviruses including SARS-CoV-2 in cell culture and in animal models. Here we generated a series of deuterated variants of a 3CLpro inhibitor, GC376, and evaluated the antiviral effect against SARS-CoV-2. The deuterated GC376 displayed potent inhibitory activity against SARS-CoV-2 in the enzyme- and the cell-based assays. The K18-hACE2 mice develop mild to lethal infection commensurate with SARS-CoV-2 challenge doses and were proposed as a model for efficacy testing of antiviral agents. We treated lethally infected mice with a deuterated derivative of GC376. Treatment of K18-hACE2 mice at 24 h postinfection with a derivative (compound 2) resulted in increased survival of mice compared to vehicle-treated mice. Lung virus titers were decreased, and histopathological changes were ameliorated in compound 2-treated mice compared to vehicle-treated mice. Structural investigation using high-resolution crystallography illuminated binding interactions of 3CLpro of SARS-CoV-2 and SARS-CoV with deuterated variants of GC376. Taken together, deuterated GC376 variants have excellent potential as antiviral agents against SARS-CoV-2.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/uso terapêutico , Pirrolidinas/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Animais , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , COVID-19/patologia , Proteases 3C de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/química , Cristalografia por Raios X , Deutério , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , Pirrolidinas/química , SARS-CoV-2/enzimologia , Ácidos Sulfônicos , Transgenes
8.
J Med Chem ; 64(14): 10047-10058, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34213885

RESUMO

A series of nondeuterated and deuterated dipeptidyl aldehyde and masked aldehyde inhibitors that incorporate in their structure a conformationally constrained cyclohexane moiety was synthesized and found to potently inhibit severe acute respiratory syndrome coronavirus-2 3CL protease in biochemical and cell-based assays. Several of the inhibitors were also found to be nanomolar inhibitors of Middle East respiratory syndrome coronavirus 3CL protease. The corresponding latent aldehyde bisulfite adducts were found to be equipotent to the precursor aldehydes. High-resolution cocrystal structures confirmed the mechanism of action and illuminated the structural determinants involved in binding. The spatial disposition of the compounds disclosed herein provides an effective means of accessing new chemical space and optimizing pharmacological activity. The cellular permeability of the identified inhibitors and lack of cytotoxicity warrant their advancement as potential therapeutics for COVID-19.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Cicloexanos/farmacologia , Desenho de Fármacos , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Proteases 3C de Coronavírus/metabolismo , Cicloexanos/síntese química , Cicloexanos/química , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Tratamento Farmacológico da COVID-19
9.
J Med Chem ; 63(20): 11945-11963, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32945669

RESUMO

Acute gastroenteritis caused by noroviruses has a major impact on public health worldwide in terms of morbidity, mortality, and economic burden. The disease impacts most severely immunocompromised patients, the elderly, and children. The current lack of approved vaccines and small-molecule therapeutics for the treatment and prophylaxis of norovirus infections underscores the need for the development of norovirus-specific drugs. The studies described herein entail the use of the gem-dimethyl moiety as a means of improving the pharmacological activity and physicochemical properties of a dipeptidyl series of transition state inhibitors of norovirus 3CL protease, an enzyme essential for viral replication. Several compounds were found to be potent inhibitors of the enzyme in biochemical and cell-based assays. The pharmacological activity and cellular permeability of the inhibitors were found to be sensitive to the location of the gem-dimethyl group.


Assuntos
Antivirais/farmacologia , Dipeptídeos/farmacologia , Norovirus/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Antivirais/síntese química , Antivirais/química , Dipeptídeos/síntese química , Dipeptídeos/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Norovirus/enzimologia , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA