Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 764: 142842, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33342563

RESUMO

The study of ecological niche segregation in sympatric species is essential to understand ecosystem functioning and its response to potential changes. In the North Sea, sympatric grey and harbour seals may present competition for food resources sustained by intense fishing activities and recent increase of seal populations. In order to coexist and reduce inter-specific competition, sympatric species must segregate at least one aspect of their ecological niches: temporal, spatial or resource segregation. We aim to study the foraging resources and foraging distributions of grey seals and harbour seals and the potential competition between these species in the North Sea. Therefore, we analysed stable isotopic composition of C, N and S (δ13C, δ15N and δ34S values), and the concentrations of Hg and Se in blood of harbour and grey seals from the North Sea. Blood samples were collected on 45 grey seals and 37 harbour seals sampled along German and Scottish coasts. Stable isotope ratios were performed with an isotope ratio mass spectrometer coupled to an N-C-S elemental analyser for automated analyses. Total mercury concentrations (T-Hg) were determined by atomic absorption spectroscopy and Se concentrations by ICP-MS. The multi-tracer approach shown spatial and resource partitioning within grey and harbour seal living along German and Scottish coasts. Data indicate 1) the offshore foraging distribution of grey seals as reflected by the lower δ15N values and T-Hg concentrations and higher Se concentrations and 2) the inshore foraging distribution of harbour seals because of higher δ15N values and T-Hg concentrations and lower Se concentrations. The SIAR mixing model revealed 3) a more selective diet of grey seals compared to harbour seals and 4) the importance of sandeels in grey seal diet reflected by their high δ34S values. Lastly, diet ellipse overlaps between grey seals and harbour seals sampled along the German coasts suggested 5) a potential sharing of food resources, possibly due to the increase number of grey seals number in this area during the foraging season - all year except breeding and moulting periods. The multi-tracer approach of this study provides a more robust discrimination among diet resources and spatial foraging distributions of grey seals and harbour seals in the North Sea.


Assuntos
Caniformia , Phoca , Focas Verdadeiras , Animais , Ecossistema , Mar do Norte , Simpatria
2.
Mar Pollut Bull ; 163: 111905, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360729

RESUMO

This preliminary study investigated the potential correlations between trace elements (mercury, zinc, cadmium, copper, selenium, lead, nickel, chromium, lithium and vanadium) concentrations, measured in red blood cells, and oxidative stress biomarkers (total thiols, total glutathione, total and selenium-dependent glutathione peroxidases, triglycerides, malondialdehyde) assessed in the respective serum, in males and females P. vitulina, sampled in the Wadden Sea in spring and autumn 2015. Only concentrations of total mercury and zinc showed significant differences by sex, and only lipid peroxidation was different by season. Moreover, significant positive and negative correlations were observed between biomarkers (triglycerides, thiols, malondialdehyde, glutathione) and trace element concentrations (copper, lead, mercury, nickel, zinc). These findings suggest that the studied biomarkers could be useful for the assessment of oxidative stress in harbour seals exposed to trace elements, but further research with larger sample sizes is needed to better understand their specific associations.


Assuntos
Phoca , Selênio , Oligoelementos , Animais , Biomarcadores , Feminino , Masculino , Mar do Norte , Estresse Oxidativo , Oligoelementos/análise
3.
Chemosphere ; 237: 124448, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31398606

RESUMO

The Mediterranean Sea remains a complex system for mercury (Hg) cycling and accumulation in marine vertebrates. The extremely high levels these animals present demand for an urgent understanding of such processes and the development of new analytical techniques that go beyond the simple contamination monitoring. It was often proposed that prey selection or habitat use may affect Hg contamination in animals; however, it was never possible to measure which factor influences more rates and pathways of contamination. In this paper, we directly integrate toxicological information (Hg levels) and ecological tracers (stable isotopes of C, N and S) into a common data analysis framework (isotopic niches), with the aim of quantifying the influence of species' trophic behaviour on Hg contamination. The analysis was conducted on skin biopsies of fin whales Balaenoptera physalus, long-finned pilot whales Globicephala melas and sperm whales Physeter microcephalus. Their different trophic modes and residency in the area make them model species for the analysis of Hg accumulation along NWMS food webs. We measured Total Hg (T-Hg) concentrations through absorbance spectrometry with the DMA80 Milestone. Carbon, nitrogen and sulphur isotope compositions were measured via mass spectrometry in an IRMS coupled to an Elemental Analyser (EA) Isoprime. Comparison of ecological and contamination niches allowed to explain Hg accumulation in Mediterranean marine predators. Factors such as food web complexity, trophic position, hunting distribution or habitat use (e.g., foraging depth) did not influence Hg exposure. It is rather the selection of prey type, which determines the range of potential Hg sources and as a consequence the rates of accumulation in whales' tissues. A generalist piscivorous species such as the pilot whales will bioaccumulate more Hg than specialised sperm whales feeding mostly on cephalopods.


Assuntos
Ecologia , Monitoramento Ambiental , Cadeia Alimentar , Isótopos/análise , Baleias/metabolismo , Animais , Isótopos de Carbono/análise , Baleia Comum/metabolismo , Mar Mediterrâneo , Isótopos de Mercúrio/análise , Isótopos de Nitrogênio/análise , Cachalote/metabolismo , Isótopos de Enxofre/análise , Poluentes Químicos da Água/análise , Baleias Piloto/metabolismo
5.
Environ Pollut ; 220(Pt A): 577-587, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27742439

RESUMO

The bottlenose dolphin (Tursiops truncatus) is an upper trophic level predator and the most common cetacean species found in nearshore waters of southern Florida, including the Lower Florida Keys (LFK) and the Florida Coastal Everglades (FCE). The objective of this study was to assess contamination levels of total mercury (T-Hg) in skin and persistent organic pollutants (PCBs, PBDEs, DDXs, HCHs, HCB, Σ PCDD/Fs and Σ DL-PCBs) in blubber samples of bottlenose dolphins from LFK (n = 27) and FCE (n = 24). PCBs were the major class of compounds found in bottlenose dolphin blubber and were higher in individuals from LFK (Σ 6 PCBs LFK males: 13,421 ± 7730 ng g-1 lipids, Σ 6 PCBs LFK females: 9683 ± 19,007 ng g-1 lipids) than from FCE (Σ 6 PCBs FCE males: 5638 ng g-1 ± 3627 lipids, Σ 6 PCBs FCE females: 1427 ± 908 ng g-1 lipids). These levels were lower than previously published data from the southeastern USA. The Σ DL-PCBs were the most prevalent pollutants of dioxin and dioxin like compounds (Σ DL-PCBs LFK: 739 ng g-1 lipids, Σ DL-PCBs FCE: 183 ng g-1 lipids) since PCDD/F concentrations were low for both locations (mean 0.1 ng g-1 lipids for LFK and FCE dolphins). The toxicity equivalences of PCDD/Fs and DL-PCBs expressed as TEQ in LFK and FCE dolphins is mainly expressed by DL-PCBs (81% LFK - 65% FCE). T-Hg concentrations in skin were significantly higher in FCE (FCE median 9314 ng g-1 dw) compared to LFK dolphins (LFK median 2941 ng g-1 dw). These concentrations are the highest recorded in bottlenose dolphins in the southeastern USA, and may be explained, at least partially, by the biogeochemistry of the Everglades and mangrove sedimentary habitats that create favourable conditions for the retention of mercury and make it available at high concentrations for aquatic predators.


Assuntos
Golfinho Nariz-de-Garrafa/metabolismo , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Mercúrio/análise , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Animais , Ecossistema , Exposição Ambiental/análise , Feminino , Florida , Éteres Difenil Halogenados/farmacocinética , Masculino , Mercúrio/farmacocinética , Bifenilos Policlorados/farmacocinética , Poluentes Químicos da Água/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA