Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39386653

RESUMO

Probiotics offer therapeutic benefits by modulating the local microbiome, the host immune response, and the proliferation of pathogens. Probiotics have the potential to treat complex diseases, but their persistence or colonization is required at the target site for effective treatment. Although probiotic persistence can be achieved by repeated delivery, no biomaterial that releases clinically relevant doses of metabolically active probiotics in a sustained manner has been previously described. Here, we encapsulate stiff probiotic microorganisms within relatively less stiff hydrogels and show a generic mechanism where these microorganisms proliferate and induce hydrogel fracture, resulting in microbial release. Importantly, this fracture-based mechanism leads to microorganism release with zero-order release kinetics. Using this mechanism, small (∼1 µL) engineered living materials (ELMs) release >10 8 colony-forming-units (CFUs) of E. coli in 2 h. This release is sustained for at least 10 days. Cell release can be varied by more than three orders of magnitude by varying initial cell loading and modulating the mechanical properties of encapsulating matrix. As the governing mechanism of microbial release is entirely mechanical, we demonstrate controlled release of model Gram-negative, Gram-positive, and fungal probiotics from multiple hydrogel matrices. SIGNIFICANCE: Probiotics offer therapeutic benefits and have the potential to treat complex diseases, but their persistence at the target site is often required for effective treatment. Although probiotic persistence can be achieved by repeated delivery, no biomaterial that releases metabolically active probiotics in a sustained manner has been developed yet. This work demonstrates a generic mechanism where stiff probiotics encapsulated within relatively less stiff hydrogels proliferate and induce hydrogel fracture. This allows a zero-order release of probiotics which can be easily controlled by adjusting the properties of the encapsulating matrices. This generic mechanism is applicable for a wide range of probiotics with different synthetic matrices and has the potential to be used in the treatment of a broad range of diseases.

2.
Nat Mater ; 23(2): 281-289, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177377

RESUMO

Some animals form transient, responsive and solid-like ensembles through dynamic structural interactions. These ensembles demonstrate emergent responses such as spontaneous self-assembly, which are difficult to achieve in synthetic soft matter. Here we use shape-morphing units comprising responsive polymers to create solids that self-assemble, modulate their volume and disassemble on demand. The ensemble is composed of a responsive hydrogel, liquid crystal elastomer or semicrystalline polymer ribbons that reversibly bend or twist. The dispersions of these ribbons mechanically interlock, inducing reversible aggregation. The aggregated liquid crystal elastomer ribbons have a 12-fold increase in the yield stress compared with cooled dispersion and contract by 34% on heating. Ribbon type, concentration and shape dictate the aggregation and govern the global mechanical properties of the solid that forms. Coating liquid crystal elastomer ribbons with a liquid metal begets photoresponsive and electrically conductive aggregates, whereas seeding cells on hydrogel ribbons enables self-assembling three-dimensional scaffolds, providing a versatile platform for the design of dynamic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA