Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 4): 161-169, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35400668

RESUMO

Salicylaldehyde dehydrogenase (SALD) catalyses the last reaction in the upper pathway of naphthalene degradation: the oxidation of salicylaldehyde to salicylate. This enzyme has been isolated and studied from a few organisms that belong to the betaproteobacteria and gammaproteobacteria, predominantly Pseudomonas putida. Furthermore, there is only one crystal structure of this enzyme, which was obtained from P. putida G7. Here, crystallographic studies and analysis of the crystal structure of an Alpine soil metagenome-derived SALD (SALDAP) from an alphaproteobacterium are presented. The SALDAP gene was discovered using gene-targeted sequence assembly and it was cloned into a pLATE51 vector. The recombinant protein was overexpressed in Escherichia coli BL21 (DE3) cells and the soluble protein was purified to homogeneity. The protein crystallized at 20°C and diffraction data from the crystals were collected at a resolution of 1.9 Å. The crystal belonged to the orthorhombic space group C2221, with unit-cell parameters a = 116.8, b = 121.7, c = 318.0 Å. Analysis of the crystal structure revealed its conformation to be similar to the organization of the aldehyde dehydrogenase superfamily with three domains: the catalytic, NAD+-binding and bridging domains. The crystal structure of NahF from P. putida G7 was found to be the best structural homologue of SALDAP, even though the enzymes share only 48% amino-acid identity. Interestingly, a carboxylic acid (protocatechuic acid) was found to be a putative ligand of the enzyme and differential scanning fluorimetry was employed to confirm ligand binding. These findings open up the possibility of studying the mechanism(s) of product inhibition and biocatalysis of carboxylic acids using this enzyme and other related aldehyde dehydrogenases.


Assuntos
Metagenoma , Solo , Aldeído Oxirredutases , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Ligantes
2.
Microbiome ; 9(1): 156, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229757

RESUMO

Manufacturing and resource industries are the key drivers for economic growth with a huge environmental cost (e.g. discharge of industrial effluents and post-mining substrates). Pollutants from waste streams, either organic or inorganic (e.g. heavy metals), are prone to interact with their physical environment that not only affects the ecosystem health but also the livelihood of local communities. Unlike organic pollutants, heavy metals or trace metals (e.g. chromium, mercury) are non-biodegradable, bioaccumulate through food-web interactions and are likely to have a long-term impact on ecosystem health. Microorganisms provide varied ecosystem services including climate regulation, purification of groundwater, rehabilitation of contaminated sites by detoxifying pollutants. Recent studies have highlighted the potential of methanotrophs, a group of bacteria that can use methane as a sole carbon and energy source, to transform toxic metal (loids) such as chromium, mercury and selenium. In this review, we synthesise recent advances in the role of essential metals (e.g. copper) for methanotroph activity, uptake mechanisms alongside their potential to transform toxic heavy metal (loids). Case studies are presented on chromium, selenium and mercury pollution from the tanneries, coal burning and artisanal gold mining, respectively, which are particular problems in the developing economy that we propose may be suitable for remediation by methanotrophs. Video Abstract.


Assuntos
Mercúrio , Metais Pesados , Cromo/análise , Ecossistema , Poluição Ambiental , Metais Pesados/análise
3.
J Food Biochem ; 45(1): e13590, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346923

RESUMO

Diabetes is a metabolic disorder whose complications are among the leading cause of death. In this study, the antidiabetic effect of L-alanine was tested in alloxan-induced diabetic rats. Thirty-five male albino Wistar rats were divided into five groups viz; Group I and II: nondiabetic and diabetic controls respectively; Group III and IV: 150 and 300 mg/kg b.w. L-alanine treated, respectively; Group V: glibenclamide (0.5 mg/kg b.w.) treated. Weight and blood glucose were monitored during the study, while liver and kidney functions, lipid profile, and antioxidant markers were examined at the end of the study. The outcomes indicate that 300 mg/kg L-alanine resulted to a significant decrease (p < .05) in weight and blood glucose. L-alanine restored tissue antioxidants, kidney, and liver functions by improving important parameters. Histopathological studies showed the potential of L-alanine in regeneration of the islets of Langerhans. These findings suggest that L-alanine has an alleviating effect on alloxan-induced diabetes. PRACTICAL APPLICATIONS: Several medicinal plants have been tested for their antidiabetic potentials, however, the isolation of the active compounds from these plants for medicinal use is often challenging. Here, we present data that suggests the potential use of a pure and harmless amino acid compound (L-alanine) for the management of diabetes. L-alanine is readily available, cheap and can also be found in many foods we eat. Therefore, L-alanine may be taken by diabetic patients as a food supplement for the treatment/management of diabetes or taken as part of foods rich in the amino acid such as meat, poultry, fish, eggs, and dairy products.


Assuntos
Aloxano , Diabetes Mellitus Experimental , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Glicemia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Suplementos Nutricionais , Humanos , Masculino , Extratos Vegetais , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA