Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 15: 214, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26335498

RESUMO

BACKGROUND: Neem tree (Azadirachta indica) is one of the richest sources of skeletally diverse triterpenoids and they are well-known for their broad-spectrum pharmacological and insecticidal properties. However, the abundance of Neem triterpenoids varies among the tissues. Here, we delineate quantitative profiling of fifteen major triterpenoids across various tissues including developmental stages of kernel and pericarp, flower, leaf, stem and bark using UPLC-ESI(+)-HRMS based profiling. Transcriptome analysis was used to identify the initial genes involved in isoprenoid biosynthesis. Based on transcriptome analysis, two short-chain prenyltransferases and squalene synthase (AiSQS) were cloned and functionally characterized. RESULTS: Quantitative profiling revealed differential abundance of both total and individual triterpenoid content across various tissues. RNA from tissues with high triterpenoid content (fruit, flower and leaf) were pooled to generate 79.08 million paired-end reads using Illumina GA ΙΙ platform. 41,140 transcripts were generated by d e novo assembly. Transcriptome annotation led to the identification of the putative genes involved in isoprenoid biosynthesis. Two short-chain prenyltransferases, geranyl diphosphate synthase (AiGDS) and farnesyl diphosphate synthase (AiFDS) and squalene synthase (AiSQS) were cloned and functionally characterized using transcriptome data. RT-PCR studies indicated five-fold and ten-fold higher relative expression level of AiSQS in fruits as compared to leaves and flowers, respectively. CONCLUSIONS: Triterpenoid profiling indicated that there is tissue specific variation in their abundance. The mature seed kernel and initial stages of pericarp were found to contain the highest amount of limonoids. Furthermore, a wide diversity of triterpenoids, especially C-seco triterpenoids were observed in kernel as compared to the other tissues. Pericarp, flower and leaf contained mainly ring-intact triterpenoids. The initial genes such as AiGDS, AiFDS and AiSQS involved in the isoprenoids biosynthesis have been functionally characterized. The expression levels of AiFDS and AiSQS were found to be in correlation with the total triterpenoid content in individual tissues.


Assuntos
Azadirachta/genética , Regulação da Expressão Gênica , Proteínas de Plantas/genética , Triterpenos/metabolismo , Azadirachta/metabolismo , Cromatografia Líquida de Alta Pressão , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Perfilação da Expressão Gênica , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Especificidade de Órgãos , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
2.
J Chromatogr A ; 1366: 1-14, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25267707

RESUMO

C-seco triterpenoids are widely bioactive class of natural products with high structural complexity and diversity. The preparative isolation of these molecules with high purity is greatly desirable, although restricted due to the complexity of natural extracts. In this article we have demonstrated a Medium Pressure Liquid Chromatography (MPLC) based protocol for the isolation of eight major C-seco triterpenoids of salannin skeleton from Neem (Azadirachta indica) oil. Successive application of normal phase pre-packed silica-gel columns for the fractionation followed by reverse phase in automated MPLC system expedited the process and furnished highly pure metabolites. Furthermore, eight isolated triterpenoids along with five semi-synthesized derivatives were characterized using ultra performance liquid chromatography-electrospray ionization-quadrupole/orbitrap-MS/MS spectrometry as a rapid and sensitive identification technique. The structure-fragment relationships were established on the basis of plausible mechanistic pathway for the generation of daughter ions. The MS/MS spectral information of the triterpenoids was further utilized for the identification of studied molecules in the complex extract of stem and bark tissues from Neem.


Assuntos
Glicerídeos/química , Espectrometria de Massas em Tandem , Terpenos/química , Terpenos/isolamento & purificação , Limoneno , Triterpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA