Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6799, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122744

RESUMO

Spin-polarized light-emitting diodes (spin-LEDs) convert the electronic spin information to photon circular polarization, offering potential applications including spin amplification, optical communications, and advanced imaging. The conventional control of the emitted light's circular polarization requires a change in the external magnetic field, limiting the operation conditions of spin-LEDs. Here, we demonstrate an atomically thin spin-LED device based on a heterostructure of a monolayer WSe2 and a few-layer antiferromagnetic CrI3, separated by a thin hBN tunneling barrier. The CrI3 and hBN layers polarize the spin of the injected carriers into the WSe2. With the valley optical selection rule in the monolayer WSe2, the electroluminescence exhibits a high degree of circular polarization that follows the CrI3 magnetic states. Importantly, we show an efficient electrical tuning, including a sign reversal, of the electroluminescent circular polarization by applying an electrostatic field due to the electrical tunability of the few-layer CrI3 magnetization. Our results establish a platform to achieve on-demand operation of nanoscale spin-LED and electrical control of helicity for device applications.

2.
Sci Adv ; 10(32): eadn5696, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121229

RESUMO

The indirect exchange interaction between local magnetic moments via surface electrons has been long predicted to bolster the surface ferromagnetism in magnetic topological insulators (MTIs), which facilitates the quantum anomalous Hall effect. This unconventional effect is critical to determining the operating temperatures of future topotronic devices. However, the experimental confirmation of this mechanism remains elusive, especially in intrinsic MTIs. Here, we combine time-resolved photoemission spectroscopy with time-resolved magneto-optical Kerr effect measurements to elucidate the unique electromagnetism at the surface of an intrinsic MTI MnBi2Te4. Theoretical modeling based on 2D Ruderman-Kittel-Kasuya-Yosida interactions captures the initial quenching of a surface-rooted exchange gap within a factor of two but overestimates the bulk demagnetization by one order of magnitude. This mechanism directly explains the sizable gap in the quasi-2D electronic state and the nonzero residual magnetization in even-layer MnBi2Te4. Furthermore, it leads to efficient light-induced demagnetization comparable to state-of-the-art magnetophotonic crystals, promising an effective manipulation of magnetism and topological orders for future topotronics.

3.
Opt Express ; 31(6): 10348-10357, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157583

RESUMO

We report the slow-light enhanced spin-resolved in-plane emission from a single quantum dot (QD) in a photonic crystal waveguide (PCW). The slow light dispersions in PCWs are designed to match the emission wavelengths of single QDs. The resonance between two spin states emitted from a single QD and a slow light mode of a waveguide is investigated under a magnetic field with Faraday configuration. Two spin states of a single QD experience different degrees of enhancement as their emission wavelengths are shifted by combining diamagnetic and Zeeman effects with an optical excitation power control. A circular polarization degree up to 0.81 is achieved by changing the off-resonant excitation power. Strongly polarized photon emission enhanced by a slow light mode shows great potential to attain controllable spin-resolved photon sources for integrated optical quantum networks on chip.

4.
Nanoscale ; 14(39): 14537-14543, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36185039

RESUMO

Single charge control of localized excitons (LXs) in two-dimensional transition metal dichalcogenides (TMDCs) is crucial for potential applications in quantum information processing and storage. However, traditional electrostatic doping method by applying metallic gates onto TMDCs may cause inhomogeneous charge distribution, optical quenching, and energy loss. Herein, by locally controlling the ferroelectric polarization of the ferroelectric thin film BiFeO3 (BFO) with a scanning probe, we can deterministically manipulate the doping type of monolayer WSe2 to achieve p-type and n-type doping. This nonvolatile approach can maintain the doping type and hold the localized excitonic charges for a long time without applied voltage. Our work demonstrated that the ferroelectric polarization of BFO can control the charges of LXs effectively. Neutral and charged LXs have been observed in different ferroelectric polarization regions, confirmed by magnetic optical measurement. Highly circular polarization degree with 90% photon emission from these quantum emitters was achieved in high magnetic fields. Controlling the single charge of LXs in a non-volatile way shows a great potential for deterministic photon emission with desired charge states for photonic long-term memory.

5.
Small ; 18(10): e2106029, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35266315

RESUMO

Monolayer transition metal dichalcogenides have attracted great attention for potential applications in valleytronics. However, the valley polarization degree is usually not high because of the intervalley scattering. Here, a largely enhanced valley polarization up to 80% in monolayer WS2 under nonresonant excitation at 4.2 K is demonstrated using WS2 /LaMnO3 thin film heterostructure, which is much higher than that for monolayer WS2 on SiO2 /Si substrate with a valley polarization of 15%. Furthermore, the greatly enhanced valley polarization can be maintained to a high temperature of about 160 K with a valley polarization of 53%. The temperature dependence of valley polarization is strongly correlated with the thermomagnetic curve of LaMnO3 , indicating an exciton-magnon coupling between WS2 and LaMnO3 . A simple model is introduced to illustrate the underlying mechanisms. The coupling of WS2 and LaMnO3 is further confirmed with an observation of two interlayer excitons with opposite valley polarizations in the heterostructure, resulting from the spin-orbit coupling induced splitting of the conduction bands in monolayer transition metal dichalcogenides. The results provide a pathway to control the valleytronic properties of transition metal dichalcogenides by means of ferromagnetic van der Waals engineering, paving a way to practical valleytronic applications.

6.
Nano Lett ; 22(6): 2177-2186, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35239344

RESUMO

Strong exciton-plasmon interactions between layered two-dimensional (2D) semiconductors and gap plasmons show a great potential to implement cavity quantum electrodynamics under ambient conditions. However, achieving a robust plasmon-exciton coupling with nanocavities is still very challenging, because the layer area is usually small in the conventional approaches. Here, we report on a robust strong exciton-plasmon coupling between the gap mode of a bowtie and the excitons in MoS2 layers with gold-assisted mechanical exfoliation and nondestructive wet transfer techniques for a large-area layer. Due to the ultrasmall mode volume and strong in-plane field, the estimated effective exciton number contributing to the coupling is largely reduced. With a corrected exciton transition dipole moment, the exciton numbers are extracted as being 40 for the case of a single layer and 48 for eight layers. Our work paves the way to realize strong coupling with 2D materials with a small number of excitons at room temperature.

7.
Opt Express ; 29(19): 30735-30750, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614794

RESUMO

The second-order topological photonic crystal with the 0D corner state provides a new way to investigate cavity quantum electrodynamics and develop topological nanophotonic devices with diverse functionalities. Here, we report on the optimization and robustness of the topological corner state in the second-order topological photonic crystal both in theory and in experiment. The topological nanocavity is formed based on the 2D generalized Su-Schrieffer-Heeger model. The quality factor of the corner state is optimized theoretically and experimentally by changing the gap between two photonic crystals or just modulating the position or size of the airholes surrounding the corner. The fabricated quality factors are further optimized by the surface passivation treatment which reduces surface absorption. A maximum quality factor of the fabricated devices is about 6000, which is the highest value ever reported for the active topological corner state. Furthermore, we demonstrate the robustness of the corner state against strong disorders including the bulk defect, edge defect, and even corner defect. Our results lay a solid foundation for further investigations and applications of the topological corner state, such as the investigation of a strong coupling regime and the development of optical devices for topological nanophotonic circuitry.

8.
Opt Express ; 29(10): 14231-14244, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985147

RESUMO

We report on controllable cavity modes by controlling the backscattering by two identical scatterers. Periodic changes of the backscattering coupling between two degenerate cavity modes are observed with the changing angle between two scatterers and elucidated by a theoretical model using two-mode approximation and numerical simulations. The periodically appearing single-peak cavity modes indicate mode degeneracy at diabolical points. Interactions between single quantum dots and cavity modes are then investigated. Enhanced emission of a quantum dot with a six-fold intensity increase is obtained in a microdisk at a diabolical point. This method to control cavity modes allows large-scale integration, high reproducibility and flexible design of the size, the location, the quantity and the shape for scatterers, which can be applied for integrated photonic structures with scatterer-modified light-matter interaction.

9.
J Phys Chem Lett ; 12(8): 2133-2141, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33625855

RESUMO

Two-dimensional (2D) layered hybrid perovskites provide an ideal platform for studying the properties of excitons. Here, we report on a strong triplet-exciton and longitudinal-optical (LO) phonon coupling in 2D (C6H5CH2CH2NH3, PEA)2PbBr4 perovskites. The triplet excitons exhibit strong photoluminescence (PL) in thick perovskite microflakes, and the PL is not detectable for monolayer microflakes. The coupling strength of the triplet exciton-LO phonon is approximately two to three times greater than that of the singlet exciton-LO phonon with a LO phonon energy of about 21 meV. This difference might due to the different locations of singlet excitons located in the well and triplet excitons located in the barrier in the 2D layered perovskite. Revealing the strong coupling of triplet exciton-LO phonon provides a fundamental understanding of many-body interaction in hybrid perovskites, which is useful to develop and optimize the optoelectronic devices based on 2D perovskites in the future.

10.
Light Sci Appl ; 9: 109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637076

RESUMO

Topological lasers are immune to imperfections and disorder. They have been recently demonstrated based on many kinds of robust edge states, which are mostly at the microscale. The realization of 2D on-chip topological nanolasers with a small footprint, a low threshold and high energy efficiency has yet to be explored. Here, we report the first experimental demonstration of a topological nanolaser with high performance in a 2D photonic crystal slab. A topological nanocavity is formed utilizing the Wannier-type 0D corner state. Lasing behaviour with a low threshold of approximately 1 µW and a high spontaneous emission coupling factor of 0.25 is observed with quantum dots as the active material. Such performance is much better than that of topological edge lasers and comparable to that of conventional photonic crystal nanolasers. Our experimental demonstration of a low-threshold topological nanolaser will be of great significance to the development of topological nanophotonic circuitry for the manipulation of photons in classical and quantum regimes.

11.
Light Sci Appl ; 9: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31969981

RESUMO

In single microdisks, embedded active emitters intrinsically affect the cavity modes of the microdisks, resulting in trivial symmetric backscattering and low controllability. Here we demonstrate macroscopic control of the backscattering direction by optimizing the cavity size. The signature of the positive and negative backscattering directions in each single microdisk is confirmed with two strongly coupled microdisks. Furthermore, diabolical points are achieved at the resonance of the two microdisks, which agrees well with theoretical calculations considering the backscattering directions. Diabolical points in active optical structures pave the way for an implementation of quantum information processing with geometric phase in quantum photonic networks.

12.
Phys Rev Lett ; 122(8): 087401, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932617

RESUMO

Large coupling strengths in exciton-photon interactions are important for the quantum photonic network, while strong cavity-quantum dot interactions have been focused on s-shell excitons with small coupling strengths. Here we demonstrate strong interactions between cavities and p-shell excitons with a great enhancement by the in situ wave-function control. The p-shell excitons are demonstrated with much larger wave-function extents and nonlocal interactions beyond the dipole approximation. Then the interaction is tuned from the nonlocal to the local regime by the wave function shrinking, during which the enhancement is obtained. A large coupling strength of 210 µeV has been achieved, indicating the great potential of p-shell excitons for coherent information exchange. Furthermore, we propose a distributed delay model to quantitatively explain the coupling strength variation, revealing the intertwining of excitons and photons beyond the dipole approximation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA