Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36483341

RESUMO

In this prospective, longitudinal study, we examined the risk factors for severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among a cohort of chronic hemodialysis (HD) patients and healthcare personnel (HCPs) over a 6-month period. The risk of SARS-CoV-2 infection among HD patients and HCPs was consistently associated with a household member having SARS-CoV-2 infection.

2.
Biomolecules ; 12(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35883496

RESUMO

The spliceosome protein U1A is a prototype case of the RNA recognition motif (RRM) ubiquitous in biological systems. The in vitro kinetics of the chemical denaturation of U1A indicate that the unfolding of U1A is a two-state process but takes place via high energy channeling and a malleable transition state, an interesting variation of typical two-state behavior. Molecular dynamics (MD) simulations have been applied extensively to the study of two-state unfolding and folding of proteins and provide an opportunity to obtain a theoretical account of the experimental results and a molecular model for the transition state ensemble. We describe herein all-atom MD studies including explicit solvent of up to 100 ns on the thermal unfolding (UF) of U1A and 13 mutants. Multiple MD UF trajectories are carried out to ensure accuracy and reproducibility. A vector representation of the MD unfolding process in RMSD space is obtained and used to calculate a free energy landscape for U1A unfolding. A corresponding MD simulation and free energy landscape for the protein CI2, well known to follow a simple two state folding/unfolding model, is provided as a control. The results indicate that the unfolding pathway on the MD calculated free energy landscape of U1A shows a markedly extended transition state compared with that of CI2. The MD results support the interpretation of the observed chevron plots for U1A in terms of a high energy, channel-like transition state. Analysis of the MDUF structures shows that the transition state ensemble involves microstates with most of the RRM secondary structure intact but expanded by ~14% with respect to the radius of gyration. Comparison with results on a prototype system indicates that the transition state involves an ensemble of molten globule structures and extends over the region of ~1-35 ns in the trajectories. Additional MDUF simulations were carried out for 13 U1A mutants, and the calculated φ-values show close accord with observed results and serve to validate our methodology.


Assuntos
Simulação de Dinâmica Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas , Reprodutibilidade dos Testes , Termodinâmica
3.
J Phys Chem A ; 125(40): 8978-8986, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34609871

RESUMO

Computing quantum chemical properties of small molecules and polymers can provide insights valuable into physicists, chemists, and biologists when designing new materials, catalysts, biological probes, and drugs. Deep learning can compute quantum chemical properties accurately in a fraction of time required by commonly used methods such as density functional theory. Most current approaches to deep learning in quantum chemistry begin with geometric information from experimentally derived molecular structures or pre-calculated atom coordinates. These approaches have many useful applications, but they can be costly in time and computational resources. In this study, we demonstrate that accurate quantum chemical computations can be performed without geometric information by operating in the coordinate-free domain using deep learning on graph encodings. Coordinate-free methods rely only on molecular graphs, the connectivity of atoms and bonds, without atom coordinates or bond distances. We also find that the choice of graph-encoding architecture substantially affects the performance of these methods. The structures of these graph-encoding architectures provide an opportunity to probe an important, outstanding question in quantum mechanics: what types of quantum chemical properties can be represented by local variable models? We find that Wave, a local variable model, accurately calculates the quantum chemical properties, while graph convolutional architectures require global variables. Furthermore, local variable Wave models outperform global variable graph convolution models on complex molecules with large, correlated systems.

4.
Chem Res Toxicol ; 34(2): 584-600, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33496184

RESUMO

Electrophilically reactive drug metabolites are implicated in many adverse drug reactions. In this mechanism-termed bioactivation-metabolic enzymes convert drugs into reactive metabolites that often conjugate to nucleophilic sites within biological macromolecules like proteins. Toxic metabolite-product adducts induce severe immune responses that can cause sometimes fatal disorders, most commonly in the form of liver injury, blood dyscrasia, or the dermatologic conditions toxic epidermal necrolysis and Stevens-Johnson syndrome. This study models four of the most common metabolic transformations that result in bioactivation: quinone formation, epoxidation, thiophene sulfur-oxidation, and nitroaromatic reduction, by synthesizing models of metabolism and reactivity. First, the metabolism models predict the formation probabilities of all possible metabolites among the pathways studied. Second, the exact structures of these metabolites are enumerated. Third, using these structures, the reactivity model predicts the reactivity of each metabolite. Finally, a feedfoward neural network converts the metabolism and reactivity predictions to a bioactivation prediction for each possible metabolite. These bioactivation predictions represent the joint probability that a metabolite forms and that this metabolite subsequently conjugates to protein or glutathione. Among molecules bioactivated by these pathways, we predicted the correct pathway with an AUC accuracy of 89.98%. Furthermore, the model predicts whether molecules will be bioactivated, distinguishing bioactivated and nonbioactivated molecules with 81.06% AUC. We applied this algorithm to withdrawn drugs. The known bioactivation pathways of alclofenac and benzbromarone were identified by the algorithm, and high probability bioactivation pathways not yet confirmed were identified for safrazine, zimelidine, and astemizole. This bioactivation model-the first of its kind that jointly considers both metabolism and reactivity-enables drug candidates to be quickly evaluated for a toxicity risk that often evades detection during preclinical trials. The XenoSite bioactivation model is available at http://swami.wustl.edu/xenosite/p/bioactivation.


Assuntos
Compostos de Epóxi/metabolismo , Modelos Biológicos , Nitrobenzenos/metabolismo , Quinonas/metabolismo , Enxofre/metabolismo , Tiofenos/metabolismo , Compostos de Epóxi/química , Humanos , Estrutura Molecular , Nitrobenzenos/química , Oxirredução , Quinonas/química , Enxofre/química , Tiofenos/química
5.
Kidney360 ; 2(6): 996-1001, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35373088

RESUMO

Increased risk of SARS-CoV-2 infection was associated with community prevalence.Increased risk of SARS-CoV-2 infection was associated with exposure to infected family members and personal infection prevention measures.


Assuntos
COVID-19 , COVID-19/epidemiologia , Atenção à Saúde , Humanos , Pacientes Ambulatoriais , Diálise Renal/efeitos adversos , Fatores de Risco , SARS-CoV-2
6.
J Chem Inf Model ; 60(10): 4702-4716, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32881497

RESUMO

Adverse drug metabolism often severely impacts patient morbidity and mortality. Unfortunately, drug metabolism experimental assays are costly, inefficient, and slow. Instead, computational modeling could rapidly flag potentially toxic molecules across thousands of candidates in the early stages of drug development. Most metabolism models focus on predicting sites of metabolism (SOMs): the specific substrate atoms targeted by metabolic enzymes. However, SOMs are merely a proxy for metabolic structures: knowledge of an SOM does not explicitly provide the actual metabolite structure. Without an explicit metabolite structure, computational systems cannot evaluate the new molecule's properties. For example, the metabolite's reactivity cannot be automatically predicted, a crucial limitation because reactive drug metabolites are a key driver of adverse drug reactions (ADRs). Additionally, further metabolic events cannot be forecast, even though the metabolic path of the majority of substrates includes two or more sequential steps. To overcome the myopia of the SOM paradigm, this study constructs a well-defined system-termed the metabolic forest-for generating exact metabolite structures. We validate the metabolic forest with the substrate and product structures from a large, chemically diverse, literature-derived dataset of 20 736 records. The metabolic forest finds a pathway linking each substrate and product for 79.42% of these records. By performing a breadth-first search of depth two or three, we improve performance to 88.43 and 88.77%, respectively. The metabolic forest includes a specialized algorithm for producing accurate quinone structures, the most common type of reactive metabolite. To our knowledge, this quinone structure algorithm is the first of its kind, as the diverse mechanisms of quinone formation are difficult to systematically reproduce. We validate the metabolic forest on a previously published dataset of 576 quinone reactions, predicting their structures with a depth three performance of 91.84%. The metabolic forest accurately enumerates metabolite structures, enabling promising new directions such as joint metabolism and reactivity modeling.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Preparações Farmacêuticas , Florestas , Humanos
7.
J Chem Inf Model ; 60(7): 3431-3449, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32525671

RESUMO

Drug metabolism is a common cause of adverse drug reactions. Drug molecules can be metabolized into reactive metabolites, which can conjugate to biomolecules, like protein and DNA, in a process termed bioactivation. To mitigate adverse reactions caused by bioactivation, both experimental and computational screening assays are utilized. Experimental assays for assessing the formation of reactive metabolites are low throughput and expensive to perform, so they are often reserved until later stages of the drug development pipeline when the drug candidate pools are already significantly narrowed. In contrast, computational methods are high throughput and cheap to perform to screen thousands to millions of compounds for potentially toxic molecules during the early stages of the drug development pipeline. Commonly used computational methods focus on detecting and structurally characterizing reactive metabolite-biomolecule adducts or predicting sites on a drug molecule that are liable to form reactive metabolites. However, such methods are often only concerned with the structure of the initial drug molecule or of the adduct formed when a biomolecule conjugates to a reactive metabolite. Thus, these methods are likely to miss intermediate metabolites that may lead to subsequent reactive metabolite formation. To address these shortcomings, we create XenoNet, a metabolic network predictor, that can take a pair of a substrate and a target product as input and (1) enumerate pathways, or sequences of intermediate metabolite structures, between the pair, and (2) compute the likelihood of those pathways and intermediate metabolites. We validate XenoNet on a large, chemically diverse data set of 17 054 metabolic networks built from a literature-derived reaction database. Each metabolic network has a defined substrate molecule that has been experimentally observed to undergo metabolism into a defined product metabolite. XenoNet can predict experimentally observed pathways and intermediate metabolites linking the input substrate and product pair with a recall of 88 and 46%, respectively. Using likelihood scoring, XenoNet also achieves a top-one pathway and intermediate metabolite accuracy of 93.6 and 51.9%, respectively. We further validate XenoNet against prior methods for metabolite prediction. XenoNet significantly outperforms all prior methods across multiple metrics. XenoNet is available at https://swami.wustl.edu/xenonet.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Redes e Vias Metabólicas
8.
J Chem Inf Model ; 60(3): 1146-1164, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32040319

RESUMO

Metabolism of drugs affects their absorption, distribution, efficacy, excretion, and toxicity profiles. Metabolism is routinely assessed experimentally using recombinant enzymes, human liver microsome, and animal models. Unfortunately, these experiments are expensive, time-consuming, and often extrapolate poorly to humans because they fail to capture the full breadth of metabolic reactions observed in vivo. As a result, metabolic pathways leading to the formation of toxic metabolites are often missed during drug development, giving rise to costly failures. To address some of these limitations, computational metabolism models can rapidly and cost-effectively predict sites of metabolism-the atoms or bonds which undergo enzymatic modifications-on thousands of drug candidates, thereby improving the likelihood of discovering metabolic transformations forming toxic metabolites. However, current computational metabolism models are often unable to predict the specific metabolites formed by metabolism at certain sites. Identification of reaction type is a key step toward metabolite prediction. Phase I enzymes, which are responsible for the metabolism of more than 90% of FDA approved drugs, catalyze highly diverse types of reactions and produce metabolites with substantial structural variability. Without knowledge of potential metabolite structures, medicinal chemists cannot differentiate harmful metabolic transformations from beneficial ones. To address this shortcoming, we propose a system for simultaneously labeling sites of metabolism and reaction types, by classifying them into five key reaction classes: stable and unstable oxidations, dehydrogenation, hydrolysis, and reduction. These classes unambiguously identify 21 types of phase I reactions, which cover 92.3% of known reactions in our database. We used this labeling system to train a neural network model of phase I metabolism on a literature-derived data set encompassing 20 736 human phase I metabolic reactions. Our model, Rainbow XenoSite, was able to identify reaction-type specific sites of metabolism with a cross-validated accuracy of 97.1% area under the receiver operator curve. Rainbow XenoSite with five-color and combined output is available for use free and online through our secure server at http://swami.wustl.edu/xenosite/p/phase1_rainbow.


Assuntos
Aprendizado Profundo , Animais , Cor , Humanos , Redes e Vias Metabólicas , Microssomos Hepáticos , Redes Neurais de Computação
9.
ACS Cent Sci ; 4(1): 52-62, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29392176

RESUMO

A collection of new approaches to building and training neural networks, collectively referred to as deep learning, are attracting attention in theoretical chemistry. Several groups aim to replace computationally expensive ab initio quantum mechanics calculations with learned estimators. This raises questions about the representability of complex quantum chemical systems with neural networks. Can local-variable models efficiently approximate nonlocal quantum chemical features? Here, we find that convolutional architectures, those that only aggregate information locally, cannot efficiently represent aromaticity and conjugation in large systems. They cannot represent long-range nonlocality known to be important in quantum chemistry. This study uses aromatic and conjugated systems computed from molecule graphs, though reproducing quantum simulations is the ultimate goal. This task, by definition, is both computable and known to be important to chemistry. The failure of convolutional architectures on this focused task calls into question their use in modeling quantum mechanics. To remedy this heretofore unrecognized deficiency, we introduce a new architecture that propagates information back and forth in waves of nonlinear computation. This architecture is still a local-variable model, and it is both computationally and representationally efficient, processing molecules in sublinear time with far fewer parameters than convolutional networks. Wave-like propagation models aromatic and conjugated systems with high accuracy, and even models the impact of small structural changes on large molecules. This new architecture demonstrates that some nonlocal features of quantum chemistry can be efficiently represented in local variable models.

10.
Chem Res Toxicol ; 31(2): 68-80, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29355304

RESUMO

Cytochromes P450 (CYPs) oxidize alkylated amines commonly found in drugs and other biologically active molecules, cleaving them into an amine and an aldehyde. Metabolic studies usually neglect to report or investigate aldehydes, even though they can be toxic. It is assumed that they are efficiently detoxified into carboxylic acids and alcohols. Nevertheless, some aldehydes are reactive and escape detoxification pathways to cause adverse events by forming DNA and protein adducts. Herein, we modeled N-dealkylations that produce both amine and aldehyde metabolites and then predicted the reactivity of the aldehyde. This model used a deep learning approach previously developed by our group to predict other types of drug metabolism. In this study, we trained the model to predict N-dealkylation by human liver microsomes (HLM), finding that including isozyme-specific metabolism data alongside HLM data significantly improved results. The final HLM model accurately predicted the site of N-dealkylation within metabolized substrates (97% top-two and 94% area under the ROC curve). Next, we combined the metabolism, metabolite structure prediction, and previously published reactivity models into a bioactivation model. This combined model predicted the structure of the most likely reactive metabolite of a small validation set of drug-like molecules known to be bioactivated by N-dealkylation. Applying this model to approved and withdrawn medicines, we found that aldehyde metabolites produced from N-dealkylation may explain the hepatotoxicity of several drugs: indinavir, piperacillin, verapamil, and ziprasidone. Our results suggest that N-dealkylation may be an under-appreciated bioactivation pathway, especially in clinical contexts where aldehyde detoxification pathways are inhibited. Moreover, this is the first report of a bioactivation model constructed by combining a metabolism and reactivity model. These results raise hope that more comprehensive models of bioactivation are possible. The model developed in this study is available at http://swami.wustl.edu/xenosite/ .


Assuntos
Indinavir/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Piperacilina/metabolismo , Piperazinas/metabolismo , Tiazóis/metabolismo , Verapamil/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Aminas/química , Aminas/metabolismo , Remoção de Radical Alquila , Humanos , Indinavir/farmacologia , Fígado/efeitos dos fármacos , Microssomos Hepáticos/química , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Piperacilina/farmacologia , Piperazinas/farmacologia , Tiazóis/farmacologia , Verapamil/farmacologia
11.
Chem Res Toxicol ; 30(4): 1046-1059, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-28256829

RESUMO

Structural alerts are commonly used in drug discovery to identify molecules likely to form reactive metabolites and thereby become toxic. Unfortunately, as useful as structural alerts are, they do not effectively model if, when, and why metabolism renders safe molecules toxic. Toxicity due to a specific structural alert is highly conditional, depending on the metabolism of the alert, the reactivity of its metabolites, dosage, and competing detoxification pathways. A systems approach, which explicitly models these pathways, could more effectively assess the toxicity risk of drug candidates. In this study, we demonstrated that mathematical models of P450 metabolism can predict the context-specific probability that a structural alert will be bioactivated in a given molecule. This study focuses on the furan, phenol, nitroaromatic, and thiophene alerts. Each of these structural alerts can produce reactive metabolites through certain metabolic pathways but not always. We tested whether our metabolism modeling approach, XenoSite, can predict when a given molecule's alerts will be bioactivated. Specifically, we used models of epoxidation, quinone formation, reduction, and sulfur-oxidation to predict the bioactivation of furan-, phenol-, nitroaromatic-, and thiophene-containing drugs. Our models separated bioactivated and not-bioactivated furan-, phenol-, nitroaromatic-, and thiophene-containing drugs with AUC performances of 100%, 73%, 93%, and 88%, respectively. Metabolism models accurately predict whether alerts are bioactivated and thus serve as a practical approach to improve the interpretability and usefulness of structural alerts. We expect that this same computational approach can be extended to most other structural alerts and later integrated into toxicity risk models. This advance is one necessary step toward our long-term goal of building comprehensive metabolic models of bioactivation and detoxification to guide assessment and design of new therapeutic molecules.


Assuntos
Furanos/química , Modelos Químicos , Fenóis/química , Tiofenos/química , Animais , Área Sob a Curva , Benzoquinonas/química , Benzoquinonas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Furanos/metabolismo , Furanos/toxicidade , Fígado/efeitos dos fármacos , Oxirredução , Fenóis/metabolismo , Fenóis/toxicidade , Curva ROC , Tiofenos/metabolismo , Tiofenos/toxicidade
12.
ACS Cent Sci ; 2(8): 529-37, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27610414

RESUMO

Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn from the market and causes 50% of acute liver failure cases in the United States. A common mechanism often underlies many types of drug toxicities, including both DILI and IADRs. Drugs are bioactivated by drug-metabolizing enzymes into reactive metabolites, which then conjugate to sites in proteins or DNA to form adducts. DNA adducts are often mutagenic and may alter the reading and copying of genes and their regulatory elements, causing gene dysregulation and even triggering cancer. Similarly, protein adducts can disrupt their normal biological functions and induce harmful immune responses. Unfortunately, reactive metabolites are not reliably detected by experiments, and it is also expensive to test drug candidates for potential to form DNA or protein adducts during the early stages of drug development. In contrast, computational methods have the potential to quickly screen for covalent binding potential, thereby flagging problematic molecules and reducing the total number of necessary experiments. Here, we train a deep convolution neural network-the XenoSite reactivity model-using literature data to accurately predict both sites and probability of reactivity for molecules with glutathione, cyanide, protein, and DNA. On the site level, cross-validated predictions had area under the curve (AUC) performances of 89.8% for DNA and 94.4% for protein. Furthermore, the model separated molecules electrophilically reactive with DNA and protein from nonreactive molecules with cross-validated AUC performances of 78.7% and 79.8%, respectively. On both the site- and molecule-level, the model's performances significantly outperformed reactivity indices derived from quantum simulations that are reported in the literature. Moreover, we developed and applied a selectivity score to assess preferential reactions with the macromolecules as opposed to the common screening traps. For the entire data set of 2803 molecules, this approach yielded totals of 257 (9.2%) and 227 (8.1%) molecules predicted to be reactive only with DNA and protein, respectively, and hence those that would be missed by standard reactivity screening experiments. Site of reactivity data is an underutilized resource that can be used to not only predict if molecules are reactive, but also show where they might be modified to reduce toxicity while retaining efficacy. The XenoSite reactivity model is available at http://swami.wustl.edu/xenosite/p/reactivity.

13.
Bioinformatics ; 32(20): 3183-3189, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27324196

RESUMO

MOTIVATION: Uridine diphosphate glucunosyltransferases (UGTs) metabolize 15% of FDA approved drugs. Lead optimization efforts benefit from knowing how candidate drugs are metabolized by UGTs. This paper describes a computational method for predicting sites of UGT-mediated metabolism on drug-like molecules. RESULTS: XenoSite correctly predicts test molecule's sites of glucoronidation in the Top-1 or Top-2 predictions at a rate of 86 and 97%, respectively. In addition to predicting common sites of UGT conjugation, like hydroxyl groups, it can also accurately predict the glucoronidation of atypical sites, such as carbons. We also describe a simple heuristic model for predicting UGT-mediated sites of metabolism that performs nearly as well (with, respectively, 80 and 91% Top-1 and Top-2 accuracy), and can identify the most challenging molecules to predict on which to assess more complex models. Compared with prior studies, this model is more generally applicable, more accurate and simpler (not requiring expensive quantum modeling). AVAILABILITY AND IMPLEMENTATION: The UGT metabolism predictor developed in this study is available at http://swami.wustl.edu/xenosite/p/ugt CONTACT: : swamidass@wustl.eduSupplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Glucuronosiltransferase/metabolismo , Preparações Farmacêuticas/metabolismo , Interações Medicamentosas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA