Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998010

RESUMO

Freshwater acidification (FA) has become a global environmental problem, posing a potential threat to freshwater ecosystems. The gut microbiota plays a crucial role in the host's response and adaptation to new environments. In this study, we investigated the changes in microbial communities in Red-eared slider (Trachemys scripta elegans) under acidic conditions to reveal the ecological impacts of acidification on freshwater turtles. The results showed that there were significant differences in ß-diversity (p = 0.03), while there were no significant differences in the α-diversity of gut microbiota in T. s. elegans between the different levels of acidification (pH of 5.5, 6.5, 7.5). Both the Gut Microbiome Health Index (GMHI) and the Microbial Dysbiosis Index (MDI) exhibited significant differences when comparing environments with a pH of 5.5 to those with a pH of 6.5 (p < 0.01). A comparative analysis between pH levels of 5.5 and 6.5 also revealed substantial differences (p < 0.01). Likewise, a comparative analysis between pH levels of 6.5 and 7.5 also revealed substantial differences (p < 0.01). At the phylum level, Firmicutes, Fusobacteria, and Bacteroidota formed a major part of the gut microbial community, Fusobacteria showed significant differences in different acidity environments (p = 0.03). At the genus level, Cetobacterium, Turicibacter, unclassified Eubacteriaceae, and Anaerorhabdus_furcosa_group showed significant differences in different acidity environments. The pH reduced interactivity in the gut microbiota of T. s. elegans. In addition, LEfSe analysis and functional prediction revealed that the potentially_pathogenic and stress_tolerant functional characteristics also showed significant differences in different acidity environments. The findings underscore the pivotal role of the gut microbiota in T. s. elegans in response to freshwater acidification and provide a foundation for further exploration into the impacts of acidification on freshwater ecosystems.

2.
Biochem Biophys Rep ; 36: 101565, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37965064

RESUMO

Chronic pelvic pain syndrome (CPPS) is a common complication of prostatitis, which was associated with the pathological depolarization of macrophage and the neuroinflammation. However, its underlying reason is far from clear and few effective treatments is applicable. In this study, we tested the effect of obacunone (Oba), a highly oxygenated triterpenoid, on CPPS. The experimental autoimmune prostatitis (EAP) was induced by subcutaneous injection of heterologous prostate homogenate in mice. We found that EAP led to prostatodynia, neuronal activation of spinal dorsal horn, and the pro-inflammatory depolarization of macrophage within prostate, which was significantly alleviated by oral administration of Oba in a dose-dependent manner. Mechanistically, EAP-induced production of IL-6 on prostatic macrophage was suppressed by Oba. Moreover, co-administration of Oba and MIF inhibitor ISO-1 did not lead to additive effect when compared with either alone. In summary, we conclude that Oba prevents the production of macrophage-derived pro-inflammatory factors by inhibiting MIF, which eventually alleviates CPPS after prostatitis.

3.
J Mater Chem B ; 11(31): 7410-7423, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37431779

RESUMO

The anti-washout ability of calcium phosphate cement (CPC) determines its effectiveness in clinical application. In the current research, the common method for improving the anti-washout ability of CPC is to add anti-washout polymer agents. Sodium polyacrylate powder is an excellent anti-washout agent but when bonded with CPC it basically degrades the anti-washout performance of CPC after γ-ray irradiation, and is widely used in the sterilization process of CPC products. Therefore, we propose a method for the preparation of a sodium polyacrylate solution through irradiation polymerization as curing solution for CPC. This method first uses γ-ray irradiation sterilization to improve the anti-washout ability of CPC directly. It not only avoids the adverse effects of γ-rays on anti-washout agents, but also the CPC blended using this sodium polyacrylate solution had good biological properties and injectability. It provides a new method for promoting the anti-washout properties of calcium phosphate cement, which is of great significance for expanding the clinical application of CPC.


Assuntos
Cimentos Ósseos , Fosfatos de Cálcio , Polimerização , Força Compressiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA