Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Antiviral Res ; 200: 105281, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35292289

RESUMO

Global analysis of the susceptibility of influenza viruses to neuraminidase (NA) inhibitors (NAIs) and the polymerase acidic (PA) inhibitor (PAI) baloxavir was conducted by five World Health Organization Collaborating Centres for Reference and Research on Influenza during two periods (May 2018-May 2019 and May 2019-May 2020). Combined phenotypic and NA sequence-based analysis revealed that the global frequency of viruses displaying reduced or highly reduced inhibition (RI or HRI) or potential to show RI/HRI by NAIs remained low, 0.5% (165/35045) and 0.6% (159/26010) for the 2018-2019 and 2019-2020 periods, respectively. The most common amino acid substitution was NA-H275Y (N1 numbering) conferring HRI by oseltamivir and peramivir in A(H1N1)pdm09 viruses. Combined phenotypic and PA sequence-based analysis showed that the global frequency of viruses showing reduced susceptibility to baloxavir or carrying substitutions associated with reduced susceptibility was low, 0.5% (72/15906) and 0.1% (18/15692) for the 2018-2019 and 2019-2020 periods, respectively. Most (n = 61) of these viruses had I38→T/F/M/S/L/V PA amino acid substitutions. In Japan, where baloxavir use was highest, the rate was 4.5% (41/919) in the 2018-2019 period and most of the viruses (n = 32) had PA-I38T. Zoonotic viruses isolated from humans (n = 32) in different countries did not contain substitutions in NA associated with NAI RI/HRI phenotypes. One A(H5N6) virus had a dual substitution PA-I38V + PA-E199G, which may reduce susceptibility to baloxavir. Therefore, NAIs and baloxavir remain appropriate choices for the treatment of influenza virus infections, but close monitoring of antiviral susceptibility is warranted.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Substituição de Aminoácidos , Antivirais/farmacologia , Antivirais/uso terapêutico , Dibenzotiepinas , Farmacorresistência Viral/genética , Endonucleases/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza B , Morfolinas , Neuraminidase/genética , Neuraminidase/uso terapêutico , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Piridonas , Triazinas
2.
Antiviral Res ; 175: 104718, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32004620

RESUMO

The global analysis of neuraminidase inhibitor (NAI) susceptibility of influenza viruses has been conducted since the 2012-13 period. In 2018 a novel cap-dependent endonuclease inhibitor, baloxavir, that targets polymerase acidic subunit (PA) was approved for the treatment of influenza virus infection in Japan and the United States. For this annual report, the susceptibilities of influenza viruses to NAIs and baloxavir were analyzed. A total of 15409 viruses, collected by World Health Organization (WHO) recognized National Influenza Centers and other laboratories between May 2017 and May 2018, were assessed for phenotypic NAI susceptibility by five WHO Collaborating Centers (CCs). The 50% inhibitory concentration (IC50) was determined for oseltamivir, zanamivir, peramivir and laninamivir. Reduced inhibition (RI) or highly reduced inhibition (HRI) by one or more NAIs was exhibited by 0.8% of viruses tested (n = 122). The frequency of viruses with RI or HRI has remained low since this global analysis began (2012-13: 0.6%; 2013-14: 1.9%; 2014-15: 0.5%; 2015-16: 0.8%; 2016-17: 0.2%). PA gene sequence data, available from public databases (n = 13523), were screened for amino acid substitutions associated with reduced susceptibility to baloxavir (PA E23G/K/R, PA A36V, PA A37T, PA I38F/M/T/L, PA E119D, PA E199G): 11 (0.08%) viruses possessed such substitutions. Five of them were included in phenotypic baloxavir susceptibility analysis by two WHO CCs and IC50 values were determined. The PA variant viruses showed 6-17-fold reduced susceptibility to baloxavir. Overall, in the 2017-18 period the frequency of circulating influenza viruses with reduced susceptibility to NAIs or baloxavir was low, but continued monitoring is important.


Assuntos
Antivirais/farmacologia , Dibenzotiepinas/farmacologia , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Morfolinas/farmacologia , Piridonas/farmacologia , Triazinas/farmacologia , Substituição de Aminoácidos , Saúde Global , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza B/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Concentração Inibidora 50 , Mutação , Oseltamivir/farmacologia
3.
Emerg Infect Dis ; 25(1): 63-72, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561311

RESUMO

We characterized 55 influenza A(H9N2) viruses isolated in Pakistan during 2014-2016 and found that the hemagglutinin gene is of the G1 lineage and that internal genes have differentiated into a variety of novel genotypes. Some isolates had up to 4-fold reduction in hemagglutination inhibition titers compared with older viruses. Viruses with hemagglutinin A180T/V substitutions conveyed this antigenic diversity and also caused up to 3,500-fold greater binding to avian-like and >20-fold greater binding to human-like sialic acid receptor analogs. This enhanced binding avidity led to reduced virus replication in primary and continuous cell culture. We confirmed that altered receptor-binding avidity of H9N2 viruses, including enhanced binding to human-like receptors, results in antigenic variation in avian influenza viruses. Consequently, current vaccine formulations might not induce adequate protective immunity in poultry, and emergence of isolates with marked avidity for human-like receptors increases the zoonotic risk.


Assuntos
Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/imunologia , Receptores de Superfície Celular/metabolismo , Animais , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Variação Antigênica , Sítios de Ligação , Eritrócitos/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Vírus da Influenza A Subtipo H9N2/metabolismo , Influenza Aviária/virologia , Neuraminidase/metabolismo , Paquistão , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/virologia , Zoonoses/virologia
4.
Antiviral Res ; 157: 38-46, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29981793

RESUMO

A total of 13672 viruses, collected by World Health Organization recognised National Influenza Centres between May 2016 and May 2017, were assessed for neuraminidase inhibitor susceptibility by four WHO Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance Epidemiology and Control of Influenza. The 50% inhibitory concentration (IC50) was determined for oseltamivir and zanamivir for all viruses, and for peramivir and laninamivir in a subset (n = 8457). Of the viruses tested, 94% were obtained from the Western Pacific, Americas and European WHO regions, while limited viruses were available from the Eastern Mediterranean, African and South East Asian regions. Reduced inhibition (RI) by one or more neuraminidase inhibitor was exhibited by 0.2% of viruses tested (n = 32). The frequency of viruses with RI has remained low since this global analysis began (2015/16: 0.8%, 2014/15: 0.5%; 2013/14: 1.9%; 2012/13: 0.6%) but 2016/17 has the lowest frequency observed to date. Analysis of 13581 neuraminidase sequences retrieved from public databases, of which 5243 sequences were from viruses not included in the phenotypic analyses, identified 58 further viruses (29 without phenotypic analyses) with amino acid substitutions associated with RI by at least one neuraminidase inhibitor. Bringing the total proportion to 0.5% (90/18915). This 2016/17 analysis demonstrates that neuraminidase inhibitors remain suitable for treatment and prophylaxis of influenza virus infections, but continued monitoring is important. An expansion of surveillance testing is paramount since several novel influenza antivirals are in late stage clinical trials with some resistance already having been identified.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Inibidores Enzimáticos/farmacologia , Influenza Humana/virologia , Neuraminidase/antagonistas & inibidores , Orthomyxoviridae/efeitos dos fármacos , Substituição de Aminoácidos , Saúde Global , Humanos , Influenza Humana/epidemiologia , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Mutação de Sentido Incorreto , Neuraminidase/genética , Orthomyxoviridae/enzimologia , Orthomyxoviridae/isolamento & purificação , Prevalência , Análise de Sequência de DNA
5.
Antiviral Res ; 146: 12-20, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28802866

RESUMO

Four World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza (WHO CCs) assessed antiviral susceptibility of 14,330 influenza A and B viruses collected by WHO-recognized National Influenza Centres (NICs) between May 2015 and May 2016. Neuraminidase (NA) inhibition assay was used to determine 50% inhibitory concentration (IC50) data for NA inhibitors (NAIs) oseltamivir, zanamivir, peramivir and laninamivir. Furthermore, NA sequences from 13,484 influenza viruses were retrieved from public sequence databases and screened for amino acid substitutions (AAS) associated with reduced inhibition (RI) or highly reduced inhibition (HRI) by NAIs. Of the viruses tested by WHO CCs 93% were from three WHO regions: Western Pacific, the Americas and Europe. Approximately 0.8% (n = 113) exhibited either RI or HRI by at least one of four NAIs. As in previous seasons, the most common NA AAS was H275Y in A(H1N1)pdm09 viruses, which confers HRI by oseltamivir and peramivir. Two A(H1N1)pdm09 viruses carried a rare NA AAS, S247R, shown in this study to confer RI/HRI by the four NAIs. The overall frequency of A(H1N1)pdm09 viruses containing NA AAS associated with RI/HRI was approximately 1.8% (125/6915), which is slightly higher than in the previous 2014-15 season (0.5%). Three B/Victoria-lineage viruses contained a new AAS, NA H134N, which conferred HRI by zanamivir and laninamivir, and borderline HRI by peramivir. A single B/Victoria-lineage virus harboured NA G104E, which was associated with HRI by all four NAIs. The overall frequency of RI/HRI phenotype among type B viruses was approximately 0.6% (43/7677), which is lower than that in the previous season. Overall, the vast majority (>99%) of the viruses tested by WHO CCs were susceptible to all four NAIs, showing normal inhibition (NI). Hence, NAIs remain the recommended antivirals for treatment of influenza virus infections. Nevertheless, our data indicate that it is prudent to continue drug susceptibility monitoring using both NAI assay and sequence analysis.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Ácidos Carbocíclicos , Substituição de Aminoácidos , Antivirais/administração & dosagem , Antivirais/uso terapêutico , Ciclopentanos/farmacologia , Farmacorresistência Viral/genética , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/uso terapêutico , Monitoramento Epidemiológico , Saúde Global , Guanidinas/farmacologia , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza B/enzimologia , Vírus da Influenza B/genética , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Oseltamivir/farmacologia , Piranos , Estações do Ano , Ácidos Siálicos , Organização Mundial da Saúde , Zanamivir/análogos & derivados
6.
Euro Surveill ; 21(41)2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27762211

RESUMO

Influenza antigenic and genetic characterisation data are crucial for influenza vaccine composition decision making. Previously, aggregate data were reported to the European Centre for Disease Prevention and Control by European Union/European Economic Area (EU/EEA) countries. A system for collecting case-specific influenza antigenic and genetic characterisation data was established for the 2013/14 influenza season. In a pilot study, 11 EU/EEA countries reported through the new mechanism. We demonstrated feasibility of reporting strain-based antigenic and genetic data and ca 10% of influenza virus-positive specimens were selected for further characterisation. Proportions of characterised virus (sub)types were similar to influenza virus circulation levels. The main genetic clades were represented by A/StPetersburg/27/2011(H1N1)pdm09 and A/Texas/50/2012(H3N2). A(H1N1)pdm09 viruses were more prevalent in age groups (by years) < 1 (65%; p = 0.0111), 20-39 (50%; p = 0.0046) and 40-64 (55%; p = 0.00001) while A(H3N2) viruses were most prevalent in those ≥ 65 years (62%*; p = 0.0012). Hospitalised patients in the age groups 6-19 years (67%; p = 0.0494) and ≥ 65 years (52%; p = 0.0005) were more frequently infected by A/Texas/50/2012 A(H3N2)-like viruses compared with hospitalised cases in other age groups. Strain-based reporting enabled deeper understanding of influenza virus circulation among hospitalised patients and substantially improved the reporting of virus characterisation data. Therefore, strain-based reporting of readily available data is recommended to all reporting countries within the EU/EEA.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Estações do Ano , Vigilância de Evento Sentinela , Adolescente , Adulto , Distribuição por Idade , Idoso , Criança , Pré-Escolar , Monitoramento Epidemiológico , Europa (Continente)/epidemiologia , União Europeia , Estudos de Viabilidade , Testes de Inibição da Hemaglutinação , Hospitalização/estatística & dados numéricos , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vacinas contra Influenza/administração & dosagem , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Pessoa de Meia-Idade , RNA Viral/genética , Análise de Sequência de DNA , Distribuição por Sexo , Vacinação/estatística & dados numéricos , Adulto Jovem
7.
Antiviral Res ; 132: 178-85, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27265623

RESUMO

The World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza (WHO CCs) tested 13,312 viruses collected by WHO recognized National Influenza Centres between May 2014 and May 2015 to determine 50% inhibitory concentration (IC50) data for neuraminidase inhibitors (NAIs) oseltamivir, zanamivir, peramivir and laninamivir. Ninety-four per cent of the viruses tested by the WHO CCs were from three WHO regions: Western Pacific, the Americas and Europe. Approximately 0.5% (n = 68) of viruses showed either highly reduced inhibition (HRI) or reduced inhibition (RI) (n = 56) against at least one of the four NAIs. Of the twelve viruses with HRI, six were A(H1N1)pdm09 viruses, three were A(H3N2) viruses and three were B/Yamagata-lineage viruses. The overall frequency of viruses with RI or HRI by the NAIs was lower than that observed in 2013-14 (1.9%), but similar to the 2012-13 period (0.6%). Based on the current analysis, the NAIs remain an appropriate choice for the treatment and prophylaxis of influenza virus infections.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/enzimologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Neuraminidase/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Antivirais/uso terapêutico , Bases de Dados Factuais , Relação Dose-Resposta a Droga , Farmacorresistência Viral , Saúde Global , História do Século XXI , Humanos , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Influenza Humana/história , Testes de Sensibilidade Microbiana , Mutação , Neuraminidase/genética , Vigilância da População , Proteínas Virais/genética , Organização Mundial da Saúde
8.
Antiviral Res ; 117: 27-38, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25721488

RESUMO

Four World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza (WHO CCs) tested 10,641 viruses collected by WHO-recognized National Influenza Centres between May 2013 and May 2014 to determine 50% inhibitory concentration (IC50) data for neuraminidase inhibitors (NAIs) oseltamivir, zanamivir, peramivir and laninamivir. In addition, neuraminidase (NA) sequence data, available from the WHO CCs and from sequence databases (n=3206), were screened for amino acid substitutions associated with reduced NAI susceptibility. Ninety-five per cent of the viruses tested by the WHO CCs were from three WHO regions: Western Pacific, the Americas and Europe. Approximately 2% (n=172) showed highly reduced inhibition (HRI) against at least one of the four NAIs, commonly oseltamivir, while 0.3% (n=32) showed reduced inhibition (RI). Those showing HRI were A(H1N1)pdm09 with NA H275Y (n=169), A(H3N2) with NA E119V (n=1), B/Victoria-lineage with NA E117G (n=1) and B/Yamagata-lineage with NA H273Y (n=1); amino acid position numbering is A subtype and B type specific. Although approximately 98% of circulating viruses tested during the 2013-2014 period were sensitive to all four NAIs, a large community cluster of A(H1N1)pdm09 viruses with the NA H275Y substitution from patients with no previous exposure to antivirals was detected in Hokkaido, Japan. Significant numbers of A(H1N1)pdm09 NA H275Y viruses were also detected in China and the United States: phylogenetic analyses showed that the Chinese viruses were similar to those from Japan, while the United States viruses clustered separately from those of the Hokkaido outbreak, indicative of multiple resistance-emergence events. Consequently, global surveillance of influenza antiviral susceptibility should be continued from a public health perspective.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Neuraminidase/genética , Ácidos Carbocíclicos , Substituição de Aminoácidos , China/epidemiologia , Ciclopentanos/farmacologia , Surtos de Doenças/estatística & dados numéricos , Farmacorresistência Viral/genética , Europa (Continente)/epidemiologia , Guanidinas/farmacologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/genética , Concentração Inibidora 50 , Japão/epidemiologia , Testes de Sensibilidade Microbiana , Neuraminidase/química , Oseltamivir/farmacologia , Filogenia , Piranos , Ácidos Siálicos , Fatores de Tempo , Estados Unidos/epidemiologia , Organização Mundial da Saúde , Zanamivir/análogos & derivados , Zanamivir/farmacologia
9.
Antiviral Res ; 110: 31-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043638

RESUMO

Emergence of influenza viruses with reduced susceptibility to neuraminidase inhibitors (NAIs) is sporadic, often follows exposure to NAIs, but occasionally occurs in the absence of NAI pressure. The emergence and global spread in 2007/2008 of A(H1N1) influenza viruses showing clinical resistance to oseltamivir due to neuraminidase (NA) H275Y substitution, in the absence of drug pressure, warrants continued vigilance and monitoring for similar viruses. Four World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza (WHO CCs) tested 11,387 viruses collected by WHO-recognized National Influenza Centres (NIC) between May 2012 and May 2013 to determine 50% inhibitory concentration (IC50) data for oseltamivir, zanamivir, peramivir and laninamivir. The data were evaluated using normalized IC50 fold-changes rather than raw IC50 data. Nearly 90% of the 11,387 viruses were from three WHO regions: Western Pacific, the Americas and Europe. Only 0.2% (n=27) showed highly reduced inhibition (HRI) against at least one of the four NAIs, usually oseltamivir, while 0.3% (n=39) showed reduced inhibition (RI). NA sequence data, available from the WHO CCs and from sequence databases (n=3661), were screened for amino acid substitutions associated with reduced NAI susceptibility. Those showing HRI were A(H1N1)pdm09 with NA H275Y (n=18), A(H3N2) with NA E119V (n=3) or NA R292K (n=1) and B/Victoria-lineage with NA H273Y (n=2); amino acid position numbering is A subtype and B type specific. Overall, approximately 99% of circulating viruses tested during the 2012-2013 period were sensitive to all four NAIs. Consequently, these drugs remain an appropriate choice for the treatment and prophylaxis of influenza virus infections.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Neuraminidase/antagonistas & inibidores , Ácidos Carbocíclicos , Substituição de Aminoácidos , Ciclopentanos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Guanidinas/uso terapêutico , Humanos , Vírus da Influenza A/isolamento & purificação , Neuraminidase/genética , Oseltamivir/uso terapêutico , Piranos , Ácidos Siálicos , Zanamivir/análogos & derivados , Zanamivir/uso terapêutico
10.
Vaccine ; 32(37): 4713-25, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-24582632

RESUMO

In February the World Health Organisation (WHO) recommends influenza viruses to be included in influenza vaccines for the forthcoming winter in the Northern Hemisphere. These recommendations are based on data collected by National Influenza Centres (NICs) through the WHO Global Influenza Surveillance and Response System (GISRS) and a more detailed analysis of representative and potential antigenically variant influenza viruses from the WHO Collaborating Centres for Influenza (WHO CCs) and Essential Regulatory Laboratories (ERLs). This article provides a detailed summary of the antigenic and genetic properties of viruses and additional background data used by WHO experts during development of the recommendations of the 2013-2014 Northern Hemisphere influenza vaccine composition.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Vacinas contra Influenza/uso terapêutico , Influenza Humana/epidemiologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/genética , Vírus da Influenza B/imunologia , Influenza Humana/prevenção & controle , Organização Mundial da Saúde
11.
Virol J ; 10: 116, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23587185

RESUMO

BACKGROUND: Influenza viruses such as swine-origin influenza A(H1N1) virus (A(H1N1)pdm09) generate genetic diversity due to the high error rate of their RNA polymerase, often resulting in mixed genotype populations (intra-host variants) within a single infection. This variation helps influenza to rapidly respond to selection pressures, such as those imposed by the immunological host response and antiviral therapy. We have applied deep sequencing to characterize influenza intra-host variation in a transmission chain consisting of three cases due to oseltamivir-sensitive viruses, and one derived oseltamivir-resistant case. METHODS: Following detection of the A(H1N1)pdm09 infections, we deep-sequenced the complete NA gene from two of the oseltamivir-sensitive virus-infected cases, and all eight gene segments of the viruses causing the remaining two cases. RESULTS: No evidence for the resistance-causing mutation (resulting in NA H275Y substitution) was observed in the oseltamivir-sensitive cases. Furthermore, deep sequencing revealed a subpopulation of oseltamivir-sensitive viruses in the case carrying resistant viruses. We detected higher levels of intra-host variation in the case carrying oseltamivir-resistant viruses than in those infected with oseltamivir-sensitive viruses. CONCLUSIONS: Oseltamivir-resistance was only detected after prophylaxis with oseltamivir, suggesting that the mutation was selected for as a result of antiviral intervention. The persisting oseltamivir-sensitive virus population in the case carrying resistant viruses suggests either that a small proportion survive the treatment, or that the oseltamivir-sensitive virus rapidly re-establishes itself in the virus population after the bottleneck. Moreover, the increased intra-host variation in the oseltamivir-resistant case is consistent with the hypothesis that the population diversity of a RNA virus can increase rapidly following a population bottleneck.


Assuntos
Variação Genética , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Neuraminidase/genética , Proteínas Virais/genética , Antivirais/farmacologia , Farmacorresistência Viral , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Oseltamivir/farmacologia , RNA Viral/genética , Seleção Genética
12.
J Clin Virol ; 57(1): 5-12, 2013 05.
Artigo em Inglês | MEDLINE | ID: mdl-23375738

RESUMO

Two classes of antiviral drugs are licensed in Europe for treatment and prophylaxis of influenza; the M2 ion-channel blockers amantadine and rimantadine acting against type A influenza viruses only and the neuraminidase enzyme inhibitors zanamivir and oseltamivir acting against type A and type B influenza viruses. This guidance document was developed for but not limited to the European Union (EU) and other European Economic Area (EEA) countries on how and when to test for influenza virus antiviral drug susceptibility. It is aimed at clinical and influenza surveillance laboratories carrying out antiviral drug susceptibility testing on influenza viruses from patients suspected of harbouring viruses with reduced susceptibility or for the monitoring of the emergence of such among circulating viruses, respectively. Therefore, the guidance should not be read as a directive or an algorithm for treatment. Monitoring for emergence of influenza viruses with reduced drug susceptibility in hospitalized cases is crucial for decision making on possible changes to antiviral treatment. Therefore, it is important to test for antiviral susceptibility in certain patient groups, such as patients treated with influenza antiviral drugs. It is also important to determine the frequency of viruses with natural (not related to drug use) reduced susceptibility among community and hospitalized cases, as this knowledge is essential for making empirical antiviral treatment decisions. Furthermore, testing of specimens from community influenza patients is needed to determine the frequency of viruses with reduced susceptibility and good viral fitness that are readily transmissible, as they may become dominant among circulating viruses. Phenotypic neuraminidase enzyme inhibition assays are recommended to determine the level of inhibition of the neuraminidase enzyme by antiviral drugs as a measure of drug susceptibility of the virus. Genotypic assays are recommended to identify amino acid substitutions in the neuraminidase and M2 ion-channel proteins that have been associated with reduced antiviral susceptibility previously. By 2012 all circulating seasonal influenza A(H1N1)pdm09 and A(H3N2) viruses were naturally resistant to the M2 ion-channel blockers, so priority should be given to testing for neuraminidase inhibitor susceptibility.


Assuntos
Antivirais/farmacologia , Orthomyxoviridae/efeitos dos fármacos , Virologia/métodos , Virologia/normas , Farmacorresistência Viral , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/virologia , Testes de Sensibilidade Microbiana , Orthomyxoviridae/isolamento & purificação , Garantia da Qualidade dos Cuidados de Saúde
13.
J Virol ; 87(4): 2226-33, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23221570

RESUMO

A novel swine-origin H1N1 influenza virus [A(H1N1)pdm09 virus] caused the 2009 influenza pandemic. Most patients exhibited mild symptoms similar to seasonal influenza, but some experienced severe clinical signs and, in the worst cases, died. Such differences in symptoms are generally associated with preexisting medical conditions, but recent reports indicate the possible involvement of viral factors in clinical severity. To better understand the mechanism of pathogenicity of the A(H1N1)pdm09 virus, here, we compared five viruses that are genetically similar but were isolated from patients with either severe or mild symptoms. In a mouse model, A/Norway/3487/2009 (Norway3487) virus exhibited greater pathogenicity than did A/Osaka/164/2009 (Osaka164) virus. By exploiting reassortant viruses between these two viruses, we found that viruses possessing the hemagglutinin (HA) gene of Norway3487 in the genetic background of Osaka164 were more pathogenic in mice than other reassortant viruses, indicating a role for HA in the high virulence of Norway3487 virus. Intriguingly, a virus possessing HA, NA, and NS derived from Norway3487 exhibited greater pathogenicity in mice in concert with PB2 and PB1 derived from Osaka164 than did the parental Norway3487 virus. These findings demonstrate that reassortment between A(H1N1)pdm09 viruses can lead to increased pathogenicity and highlight the need for continued surveillance of A(H1N1)pdm09 viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/patogenicidade , Proteínas Virais/genética , Virulência , Fatores de Virulência/genética
14.
Vaccine ; 30(45): 6461-71, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22917957

RESUMO

In February and September each year the World Health Organisation (WHO) recommends influenza viruses to be included in influenza vaccines for the forthcoming winters in the Northern and Southern Hemispheres respectively. These recommendations are based on data collected by National Influenza Centres (NIC) through the Global Influenza Surveillance and Response System (GISRS) and a more detailed analysis of representative and potential antigenically variant influenza viruses from the WHO Collaborating Centres for Influenza (WHO CCs) and Essential Regulatory Laboratories (ERLs). This article provides a detailed summary of the antigenic and genetic properties of viruses and additional background data used by WHO experts during development of the recommendations for the 2012 Southern Hemisphere influenza vaccine composition.


Assuntos
Betainfluenzavirus , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza/farmacologia , Influenza Humana/prevenção & controle , Variação Antigênica , Reações Cruzadas , Farmacorresistência Viral , Saúde Global , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/epidemiologia , Betainfluenzavirus/genética , Betainfluenzavirus/imunologia , Filogenia , Organização Mundial da Saúde
15.
PLoS One ; 7(3): e33166, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412998

RESUMO

During the Northern Hemisphere winter of 2003-2004 the emergence of a novel influenza antigenic variant, A/Fujian/411/2002-like(H3N2), was associated with an unusually high number of fatalities in children. Seventeen fatal cases in the UK were laboratory confirmed for Fujian/411-like viruses. To look for phylogenetic patterns and genetic markers that might be associated with increased virulence, sequencing and phylogenetic analysis of the whole genomes of 63 viruses isolated from fatal cases and non fatal "control" cases was undertaken. The analysis revealed the circulation of two main genetic groups, I and II, both of which contained viruses from fatal cases. No associated amino acid substitutions could be linked with an exclusive or higher occurrence in fatal cases. The Fujian/411-like viruses in genetic groups I and II completely displaced other A(H3N2) viruses, but they disappeared after 2004. This study shows that two A(H3N2) virus genotypes circulated exclusively during the winter of 2003-2004 in the UK and caused an unusually high number of deaths in children. Host factors related to immune state and differences in genetic background between patients may also play important roles in determining the outcome of an influenza infection.


Assuntos
Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/mortalidade , Substituição de Aminoácidos , Criança , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/virologia , Modelos Moleculares , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Prevalência , Conformação Proteica , Multimerização Proteica , Vírus Reordenados/genética , Análise de Sequência de DNA , Reino Unido/epidemiologia
16.
Lancet Infect Dis ; 12(3): 240-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22186145

RESUMO

Influenza A H1N1 2009 virus caused the first pandemic in an era when neuraminidase inhibitor antiviral drugs were available in many countries. The experiences of detecting and responding to resistance during the pandemic provided important lessons for public health, laboratory testing, and clinical management. We propose recommendations for antiviral susceptibility testing, reporting results, and management of patients infected with 2009 pandemic influenza A H1N1. Sustained global monitoring for antiviral resistance among circulating influenza viruses is crucial to inform public health and clinical recommendations for antiviral use, especially since community spread of oseltamivir-resistant A H1N1 2009 virus remains a concern. Further studies are needed to better understand influenza management in specific patient groups, such as severely immunocompromised hosts, including optimisation of antiviral treatment, rapid sample testing, and timely reporting of susceptibility results.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/tratamento farmacológico , Pandemias , Saúde Pública , Humanos , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Oseltamivir/uso terapêutico , Fatores de Tempo
17.
J Virol ; 86(1): 11-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22013031

RESUMO

Virus gene sequencing and phylogenetics can be used to study the epidemiological dynamics of rapidly evolving viruses. With complete genome data, it becomes possible to identify and trace individual transmission chains of viruses such as influenza virus during the course of an epidemic. Here we sequenced 153 pandemic influenza H1N1/09 virus genomes from United Kingdom isolates from the first (127 isolates) and second (26 isolates) waves of the 2009 pandemic and used their sequences, dates of isolation, and geographical locations to infer the genetic epidemiology of the epidemic in the United Kingdom. We demonstrate that the epidemic in the United Kingdom was composed of many cocirculating lineages, among which at least 13 were exclusively or predominantly United Kingdom clusters. The estimated divergence times of two of the clusters predate the detection of pandemic H1N1/09 virus in the United Kingdom, suggesting that the pandemic H1N1/09 virus was already circulating in the United Kingdom before the first clinical case. Crucially, three clusters contain isolates from the second wave of infections in the United Kingdom, two of which represent chains of transmission that appear to have persisted within the United Kingdom between the first and second waves. This demonstrates that whole-genome analysis can track in fine detail the behavior of individual influenza virus lineages during the course of a single epidemic or pandemic.


Assuntos
Evolução Molecular , Genoma Viral , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Adolescente , Adulto , Criança , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/epidemiologia , Dados de Sequência Molecular , Pandemias , Filogenia , Reino Unido , Adulto Jovem
18.
Vaccine ; 28(5): 1156-67, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20004635

RESUMO

Influenza vaccines form an important component of the global response against infections and subsequent illness caused in man by influenza viruses. Twice a year, in February and September, the World Health Organisation through its Global Influenza Surveillance Network (GISN), recommends appropriate influenza viruses to be included in the seasonal influenza vaccine for the upcoming Northern and Southern Hemisphere winters. This recommendation is based on the latest data generated from many sources and the availability of viruses that are suitable for vaccine manufacture. This article gives a summary of the data and background to the recommendations for the 2009-2010 Northern Hemisphere influenza vaccine formulation.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Vacinas contra Influenza , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/genética , Vírus da Influenza B/imunologia , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/epidemiologia , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/prevenção & controle
19.
Proc Natl Acad Sci U S A ; 106(47): 19940-5, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19918060

RESUMO

In the recently halted HIV type 1 (HIV-1) vaccine STEP trial, individuals that were seropositive for adenovirus serotype 5 (Ad5) showed increased rates of HIV-1 infection on vaccination with an Ad5 vaccine. We propose that this was due to activation and expansion of Ad5-specific mucosal-homing memory CD4 T cells. To test this hypothesis, Ad5 and Ad11 antibody titers were measured in 20 healthy volunteers. Dendritic cells (DCs) from these individuals were pulsed with replication defective Ad5 or Ad11 and co-cultured with autologous lymphocytes. Cytokine profiles, proliferative capacity, mucosal migration potential, and susceptibility to HIV infection of the adenovirus-stimulated memory CD4 T cells were measured. Stimulation of T cells from healthy Ad5-seropositive but Ad11-seronegative individuals with Ad5, or serologically distinct Ad11 vectors induced preferential expansion of adenovirus memory CD4 T cells expressing alpha(4)beta(7) integrins and CCR9, indicating a mucosal-homing phenotype. CD4 T-cell proliferation and IFN-gamma production in response to Ad stimulation correlated with Ad5 antibody titers. However, Ad5 serostatus did not correlate with total cytokine production upon challenge with Ad5 or Ad11. Expanded Ad5 and Ad11 memory CD4 T cells showed an increase in CCR5 expression and higher susceptibility to infection by R5 tropic HIV-1. This suggests that adenoviral-based vaccination against HIV-1 in individuals with preexisting immunity against Ad5 results in preferential expansion of HIV-susceptible activated CD4 T cells that home to mucosal tissues, increases the number of virus targets, and leads to a higher susceptibility to HIV acquisition.


Assuntos
Adenoviridae/imunologia , Linfócitos T CD4-Positivos/imunologia , HIV-1/imunologia , Imunidade nas Mucosas/imunologia , Memória Imunológica/imunologia , Vacinação , Vacinas contra a AIDS/imunologia , Adenoviridae/genética , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/citologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Infecções por HIV/imunologia , HIV-1/patogenicidade , Humanos , Integrina alfa4/imunologia , Cadeias beta de Integrinas/imunologia , Ativação Linfocitária/imunologia , Mucosa/imunologia , Fenótipo , Receptores CCR/imunologia , Receptores CCR4/imunologia
20.
J Virol ; 82(17): 8900-5, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18579609

RESUMO

Plasmacytoid dendritic cells (PDC) are major producers of type I interferons (IFN) in response to human immunodeficiency virus type 1 (HIV-1) infection. To better define the underlying mechanisms, we studied the magnitude of alpha IFN (IFN-alpha) induction by recombinant viruses containing changes in the Env protein that impair or disrupt CD4 binding or expressing primary env alleles with differential coreceptor tropism. We found that the CD4 binding affinity but not the viral coreceptor usage is critical for the attachment of autofluorescing HIV-1 to PDC and for subsequent IFN-alpha induction. Our results illustrate the importance of the gp120-CD4 interaction in determining HIV-1-induced immune stimulation via IFN-alpha production.


Assuntos
Antígenos CD4/imunologia , Células Dendríticas/imunologia , HIV-1/imunologia , Interferon-alfa/biossíntese , Adolescente , Adulto , Antígenos CD4/metabolismo , Linhagem Celular , Células Cultivadas , Criança , HIV-1/isolamento & purificação , HIV-1/fisiologia , Humanos , Rim/citologia , Pessoa de Meia-Idade , Transfecção , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA