Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Biointerphases ; 18(3)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289033

RESUMO

Cell-sized giant unilamellar vesicles (GUVs) are an ideal tool for understanding lipid membrane structure and properties. Label-free spatiotemporal images of their membrane potential and structure would greatly aid the quantitative understanding of membrane properties. In principle, second harmonic imaging is a great tool to do so, but the low degree of spatial anisotropy that arises from a single membrane limits its application. Here, we advance the use of wide-field high throughput SH imaging by SH imaging with the use of ultrashort laser pulses. We achieve a throughput improvement of 78% of the maximum theoretical value and demonstrate subsecond image acquisition times. We show how the interfacial water intensity can be converted into a quantitative membrane potential map. Finally, for GUV imaging, we compare this type of nonresonant SH imaging to resonant SH imaging and two photon imaging using fluorophores.


Assuntos
Microscopia de Geração do Segundo Harmônico , Lipossomas Unilamelares , Lipossomas Unilamelares/química , Água/química , Corantes Fluorescentes
2.
Anal Biochem ; 384(2): 296-304, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18938126

RESUMO

Transglutaminases catalyze the formation of Nepsilon-(gamma-glutamyl) isodipeptide crosslinks between proteins. These enzymes are thought to participate in a number of diseases, including neurological disease and cancer. A method associating liquid chromatography and multiple stage mass spectrometry has been developed for the simultaneous quantitation of [Nepsilon-(gamma-glutamyl) lysine] isodipeptide and lysine on an ion trap mass spectrometer. Highly specific detection has been achieved in MS3 mode. The method includes a derivatization step consisting of butylation of carboxylic groups and acetylation of amide groups, a liquid-liquid extraction, and a 19-min separation on a 100x2.1-mm Beta-basic C18 column with an acetonitrile gradient elution. 13C6-(15)N2 isotopes of the isodipeptide and the lysine serve as internal standards. The assay was linear in the range of 50 pmol/ml to 75 nmol/ml for the isodipeptide and the range of 10 nmol/ml to 3.5 micromol/ml for the lysine, with correlation coefficients greater than 0.99 for both ions. Intra- and inter-day coefficients of variation ranged from 3.5 to 15.9%. The method was successfully applied to human biological samples known to be crosslinked by transglutaminase such as cornified envelopes of epidermis, fibrin, and normal and Huntington disease brain.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Reagentes de Ligações Cruzadas/química , Dipeptídeos/análise , Lisina/análise , Espectrometria de Massas/métodos , Transglutaminases/metabolismo , Calibragem , Humanos , Transglutaminases/química
3.
Curr Drug Metab ; 6(5): 413-54, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16248836

RESUMO

The inhibition of human cytochrome P450s (CYPs) is one of the most common mechanisms which can lead to drug-drug interactions. The inhibition of CYPs can be reversible (competitive or non-competitive) or irreversible. Irreversible inhibition usually derives from activation of a drug by CYPs into a reactive metabolite, which tightly binds to the enzyme active site, leading to a long lasting inactivation. This process is called "mechanism based inhibition" or "suicide inhibition". The irreversible inactivation usually implies the formation of a covalent bond between the metabolite and the enzyme, which can lead to hapten formation and can in some cases trigger an autoimmune-response. For these reasons it is of utmost importance to study the mechanism of the CYP inhibition of new potential drugs as early as possible during the drug discovery process. The literature on CYPs is vast and covers numerous aspects of their biology and biochemistry, however to our knowledge there is no general and systematic review focusing on mechanism-based inhibitors; we have reviewed the literature and compiled all the available data on chemical entities, which are known to be CYP suicide inhibitors. Each compound is reported together with its chemical structure, the CYP isoform and the parameters describing the inactivation. Literature references are reported together with their PMID (PubMed ID number) to allow a fast retrieval of the papers. This review offers a quick reference to help predict liabilities of new chemical entities without carrying out extensive in vitro work, and will hopefully help in designing safer drugs.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Sistema Enzimático do Citocromo P-450/química , Interações Medicamentosas , Inibidores Enzimáticos/química , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Relação Estrutura-Atividade , Terminologia como Assunto
4.
Biochemistry ; 40(40): 12112-22, 2001 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-11580286

RESUMO

Experiments using recombinant yeast-expressed human liver cytochromes P450 confirmed previous literature data indicating that ticlopidine is an inhibitor of CYP 2C19. The present studies demonstrated that ticlopidine is selective for CYP 2C19 within the CYP 2C subfamily. UV-visible studies on the interaction of a series of ticlopidine derivatives with CYP 2C19 showed that ticlopidine binds to the CYP 2C19 active site with a K(s) value of 2.8 +/- 1 microM. Derivatives that do not involve either the o-chlorophenyl substituent, the free tertiary amine function, or the thiophene ring of ticlopidine did not lead to such spectral interactions and failed to inhibit CYP 2C19. Ticlopidine is oxidized by CYP 2C19 with formation of two major metabolites, the keto tautomer of 2-hydroxyticlopidine (1) and the dimers of ticlopidine S-oxide (TSOD) (V(max) = 13 +/- 2 and 0.4 +/- 0.1 min(-1)). During this oxidation, CYP 2C19 was inactivated; the rate of its inactivation was time and ticlopidine concentration dependent. This process meets the chemical and kinetic criteria generally accepted for mechanism-based enzyme inactivation. It occurs in parralel with CYP 2C19-catalyzed oxidation of ticlopidine, is inhibited by an alternative well-known substrate of CYP 2C19, omeprazole, and correlates with the covalent binding of ticlopidine metabolite(s) to proteins. Moreover, CYP 2C19 inactivation is not inhibited by the presence of 5 mM glutathione, suggesting that it is due to an alkylation occurring inside the CYP 2C19 active site. The effects of ticlopidine on CYP 2C19 are very analogous with those previously described for the inactivation of CYP 2C9 by tienilic acid. This suggests that a similar electrophilic intermediate, possibly a thiophene S-oxide, is involved in the inactivation of CYP 2C19 and CYP 2C9 by ticlopidine and tienilic acid, respectively. The kinetic parameters calculated for ticlopidine-dependent inactivation of CYP 2C19, i.e., t(1/2max) = 3.4 min, k(inact) = 3.2 10(-3) s(-1), K(I) = 87 microM, k(inact)/K(I) = 37 L.mol(-1).s(-1), and r (partition ratio) = 26 (in relation with formation of 1 + TSOD), classify ticlopidine as an efficient mechanism-based inhibitor although somewhat less efficient than tienilic acid for CYP 2C9. Importantly, ticlopidine is the first selective mechanism-based inhibitor of human liver CYP 2C19 and should be a new interesting tool for studying the topology of the active site of CYP 2C19.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Oxigenases de Função Mista/antagonistas & inibidores , Ticlopidina/farmacologia , Alquilação , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP2C19 , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/química , Glutationa/farmacologia , Humanos , Cinética , Fígado/enzimologia , Oxigenases de Função Mista/metabolismo , Estrutura Molecular , Omeprazol/farmacologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Análise Espectral , Ticlopidina/antagonistas & inibidores , Ticlopidina/química
5.
Arch Biochem Biophys ; 394(2): 189-200, 2001 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11594733

RESUMO

A series of new derivatives of sulfaphenazole (SPA), in which the NH(2) and phenyl substituents of SPA are replaced by various groups or in which the sulfonamide function of SPA is N-alkylated, were synthesized in order to further explore CYP 2C9 active site and to determine the structural factors explaining the selectivity of SPA for CYP 2C9 within the human P450 2C subfamily. Compounds in which the NH(2) group of SPA was replaced with R(1) = CH(3), Br, CH = CH(2), CH(2)CH = CH(2), and CH(2)CH(2)OH exhibited a high affinity for CYP 2C9, as shown by the dissociation constant of their CYP 2C9 complexes, K(s), which was determined by difference visible spectroscopy (K(s) between 0.1 and 0.4 microM) and their constant of CYP 2C9 inhibition (K(i) between 0.3 and 0.6 microM). This indicates that the CYP 2C9-iron(III)-NH(2)R bond previously described to exist in the CYP 2C9-SPA complex does not play a key role in the high affinity of SPA for CYP 2C9. Compounds in which the phenyl group of SPA was replaced with various aryl or alkyl R(2) substituents only exhibited a high affinity for CYP 2C9 if R(2) is a freely rotating and sufficiently electron-rich aryl substituent. Finally, compounds resulting from a N-alkylation of the SPA sulfonamide function (R(3) = CH(3), C(2)H(5), or C(3)H(7)) did not retain the selective inhibitory properties of SPA toward CYP 2C9. However, they are reasonably good inhibitors of CYP 2C8 and CYP 2C18 (IC(50) approximately 20 microM). These data allow one to better understand the structural factors that are important for selective binding in the CYP 2C9 active site. They also provide us with clues towards new selective inhibitors of CYP 2C8 and CYP 2C18.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Sulfafenazol/química , Sulfafenazol/metabolismo , Sítios de Ligação/fisiologia , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Microssomos/enzimologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Espectrofotometria , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Sulfafenazol/análogos & derivados , Sulfafenazol/farmacologia , Transfecção , Leveduras/química , Leveduras/metabolismo
6.
J Med Chem ; 44(22): 3622-31, 2001 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-11606127

RESUMO

Twenty-three new derivatives of sulfaphenazole (SPA) were synthesized to further explore the topology of the active sites of human liver cytochromes P450 of the 2C subfamily and to find new selective inhibitors of these cytochromes. These compounds are derived from SPA by replacement of the NH(2) and H (of the SO(2)NH function) substituents of SPA with various R(1) and R(2) groups, respectively. Their inhibitory effects were studied on recombinant CYP 2C8, 2C9, 2C18, and 2C19 expressed in yeast. High affinities for CYP 2C9 (IC(50) < 1 microM) were only observed for SPA derivatives having the SO(2)NH function and a relatively small R(1) substituent (R(1) = NH(2), CH(3)). Any increase in the size of R(1) led to a moderate decrease of the affinity, and the N-alkylation of the SO(2)NH function of SPA to a greater decrease of this affinity. The same structural changes led to opposite effects on molecular recognition by CYP 2C8 and 2C18, which generally exhibited similar behaviors. Thus, contrary to CYP 2C9, CYP 2C8 and 2C18 generally prefer neutral compounds with relatively large R(1) and R(2) substituents. CYP 2C19 showed an even lower affinity for anionic compounds than CYP 2C8 and 2C18. However, as CYP 2C8 and 2C18, CYP 2C19 showed a much better affinity for neutral compounds derived from N-alkylation of SPA and for anionic compounds bearing a larger R(1) substituent. One of the new compounds (R(1) = methyl, R(2) = propyl) inhibited all human CYP 2Cs with IC(50) values between 10 and 20 microM, while another one (R(1) = allyl, R(2) = methyl) inhibited all CYP 2Cs except CYP 2C9, and a third one (R(1) = R(2) = methyl) inhibited all CYP 2Cs except CYP 2C8. Only 2 compounds of the 25 tested derivatives were highly selective toward one human CYP 2C; these are SPA and compound 1 (R(1) = CH(3), R(2) = H), which acted as selective CYP 2C9 inhibitors. However, some SPA derivatives selectively inhibited CYP 2C8 and 2C18. Since CYP 2C18 is hardly detectable in human liver, these derivatives could be interesting molecules to selectively inhibit CYP 2C8 in human liver microsomes. Thus, compound 11 (R(1) = NH(2), R(2) = (CH(2))(2)CH(CH(3))(2)) appears to be particularly interesting for that purpose as its IC(50) value for CYP 2C8 is low (3 microM) and 20-fold smaller than those found for CYP 2C9 and 2C19.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/síntese química , Fígado/enzimologia , Esteroide 16-alfa-Hidroxilase , Sulfafenazol/análogos & derivados , Sulfafenazol/síntese química , Sulfonamidas/síntese química , Sítios de Ligação , Citocromo P-450 CYP2C19 , Sistema Enzimático do Citocromo P-450 , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Microssomos/enzimologia , Oxigenases de Função Mista/antagonistas & inibidores , Proteínas Recombinantes/antagonistas & inibidores , Esteroide Hidroxilases/antagonistas & inibidores , Relação Estrutura-Atividade , Sulfafenazol/química , Sulfafenazol/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Leveduras/enzimologia
7.
Chem Res Toxicol ; 14(6): 694-701, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11409940

RESUMO

Flucloxacillin, an isoxazolyl-penicillin, causes cholestasis and biliary epithelium injury. The aim of the study was to determine whether flucloxacillin, either directly or through metabolite formation, may induce cytotoxicity in hepatic or biliary cells. Cytotoxicity was assessed by lactate dehydrogenase release in primary cultures of human hepatocytes and of gallbladder-derived biliary epithelial cells (BEC). Metabolite production in microsome and cell preparations was analyzed by chromatography, nuclear magnetic resonance spectroscopy, and mass spectrometry. While flucloxacillin induced no direct cytotoxicity in any of the hepatocyte (n = 12) and BEC (n = 19) preparations, the conditioned media from cultured hepatocytes preincubated with flucloxacillin (50-500 mg/L) triggered a significant increase in lactate dehydrogenase release over controls in approximately 50% of BEC preparations (7/12), and this effect depended upon flucloxacillin concentration. Remaining BEC preparations exhibited no toxic response. Cytotoxicity in BEC preparations (9/13) was also induced by the supernatants of human liver microsomes and of recombinant human cytochrome P450 (CYP)3A4 preincubated with flucloxacillin (500 mg/L). Supernatants from both liver microsome and CYP3A4 preparations contained one major metabolite which was identified as 5'-hydroxymethylflucloxacillin. The production of this metabolite was inhibited following CYP3A4 inhibition by troleandomycin in human liver microsomes, and markedly enhanced following CYP3A induction by dexamethasone in rat liver microsomes. As opposed to BEC, cultured hepatocytes displayed significant CYP3A activity and produced low amounts of this metabolite. The purified metabolite (0.01-5 mg/L) exerted toxic effects in BEC but not in hepatocytes. In conclusion, hepatocytes mainly via CYP3A4 activity, generate flucloxacillin metabolite(s) including 5'-hydroxymethylflucloxacillin that may induce cytotoxicity in susceptible BEC. These metabolic events may contribute to the pathogenesis of drug-induced cholangiopathies.


Assuntos
Sistema Biliar/patologia , Sistema Enzimático do Citocromo P-450/metabolismo , Floxacilina/efeitos adversos , Fígado/efeitos dos fármacos , Oxigenases de Função Mista/metabolismo , Penicilinas/efeitos adversos , Sistema Biliar/citologia , Sistema Biliar/enzimologia , Técnicas de Cultura de Células , Colestase/induzido quimicamente , Citocromo P-450 CYP3A , Epitélio/efeitos dos fármacos , Epitélio/patologia , Floxacilina/metabolismo , Vesícula Biliar/citologia , Vesícula Biliar/patologia , Hepatócitos/enzimologia , Humanos , Fígado/patologia , Penicilinas/metabolismo
10.
Exp Toxicol Pathol ; 52(2): 145-8, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10965989

RESUMO

The aim of this study was to compare a number of vastatins, HMG-CoA reductase inhibitors, in human liver microsomes. HMG-CoA reductase activity was four times lower than the activity in untreated rat liver microsomes. Vastatins could be classified in this in vitro assay in three classes both in human and rat microsomes: the first one including cerivastatin with an IC50 of 6 nM, the second one with atorvastatin and fluvastatin (IC50) between 40 and 100 nM) and the third one containing pravastatin, simvastatin and lovastatin (IC50 between 100 and 300 nM).


Assuntos
Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lovastatina/farmacologia , Microssomos Hepáticos/enzimologia , Animais , Atorvastatina , Ácidos Graxos Monoinsaturados/farmacologia , Fluvastatina , Ácidos Heptanoicos/farmacologia , Humanos , Indóis/farmacologia , Masculino , Pravastatina/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Sinvastatina/farmacologia , Especificidade da Espécie
11.
Biochemistry ; 38(43): 14264-70, 1999 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-10572000

RESUMO

A comparison of the oxidations of diclofenac with microsomes of yeasts expressing various human liver cytochromes P450 showed that P450 2C9 regioselectively led to 4'-hydroxy diclofenac (4'-OHD) whereas P450 3A4 only led to 5-hydroxy diclofenac (5-OHD). P450 2C19, 2C18, and 2C8 led to the simultaneous formation of 4'-OHD and 5-OHD (respective molar ratios of 1.3, 0.37, and 0.17), and P450 1A1, 1A2, 2D6, and 2E1 failed to give any detectable hydroxylated metabolite under identical conditions. P450 2C9 was found to be much more efficient for diclofenac hydroxylation than all the other P450s tested (k(cat)/K(M) of 1.6 min(-1) microM(-1) instead of 0.025 for the second more active P450), mainly because of markedly lower K(M) values (15 +/- 8 instead of values between 170 and 630 microM). Oxidation of diclofenac with chemical model systems of cytochrome P450 based on iron porphyrin catalysts exclusively led to the quinone imine derived from two-electron oxidation of 5-OHD, in an almost quantitative yield. Two derivatives of diclofenac lacking its COO(-) function were then synthesized; their oxidation by recombinant human P450 2Cs always led to a major product coming from their 5-hydroxylation. Substrate 2, which derives from reduction of the COO(-) function of diclofenac to the CH(2)OH function, was studied in more detail. All the P450s tested (1A1, 1A2, 2C8, 2C9, 2C18, 2C19, 2D6, and 3A4) almost exclusively led to its 5-hydroxylation. P450s of the 2C subfamily were found to be the most efficient catalysts for this reaction, with k(cat)/K(M) values between 0.2 and 1.6 min(-1) microM(-1). Oxidation of 2 with an iron porphyrin-based chemical model of cytochrome P450 also led to a product derived from the oxidation of 2 at position 5. These results show that oxidation of diclofenac and its derivative 2, either with chemical model systems of cytochrome P450 or with recombinant human P450s, generally occurs at position 5. This position, para to the NH group on the more electron-rich aromatic ring of diclofenac derivatives, is thus, as expected, the privileged site of reaction of electrophilic, oxidant species. The most spectacular exception to this chemoselective 5-oxidation of diclofenac derivatives was found for oxidation of diclofenac itself with P450 2C9 (and P450 2C19 and 2C18 to a lesser extent), which only led to 4'-OHD. A likely explanation for this result is a strict positioning of diclofenac in the P450 2C9 active site, via its COO(-) function, to completely orientate its hydroxylation toward position 4', which is not chemically preferred. P450 2C19, 2C18, and 2C8 would not lead to such a strict positioning as they give mixtures of 4'-OHD and 5-OHD. The above results show that diclofenac derivatives are interesting tools to compare the active site topologies of human P450 2Cs.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Inibidores de Ciclo-Oxigenase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Diclofenaco/análogos & derivados , Diclofenaco/metabolismo , Esteroide 16-alfa-Hidroxilase , Sítios de Ligação , Citocromo P-450 CYP2C19 , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Humanos , Hidroxilação , Isoenzimas/biossíntese , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Fígado/enzimologia , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Mimetismo Molecular , Oxirredução , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Esteroide Hidroxilases/química , Esteroide Hidroxilases/metabolismo , Especificidade por Substrato , terc-Butil Hidroperóxido/farmacologia
12.
Biochemistry ; 38(24): 7828-36, 1999 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10387023

RESUMO

A series of 2-aroylthiophenes derived from tienilic acid by replacement of its OCH2COOH substituent with groups bearing various functions have been synthesized and studied as possible substrates of recombinant human liver cytochrome P450s 2C9 and 2C18 expressed in yeast. Whereas only compounds bearing a negative charge acted as substrates of CYP 2C9 and were hydroxylated at position 5 of their thiophene ring at a significant rate, many neutral 2-aroylthiophenes were 5-hydroxylated by CYP 2C18 with kcat values of >2 min-1. Among the various compounds that were studied, those bearing an alcohol function were the best CYP 2C18 substrates. One of them, compound 3, which bears a terminal O(CH2)3OH function, appeared to be a particularly good substrate of CYP 2C18. It was regioselectively hydroxylated by CYP 2C18 at position 5 of its thiophene ring with a KM value of 9 +/- 1 microM and a kcat value of 125 +/- 25 min-1, which are the highest described so far for a CYP 2C. A comparison of the oxidations of 3, by yeast-expressed CYP 1A1, 1A2, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, and 3A5, showed that only CYP 2C8, 2C18, and 2C19 were able to catalyze the 5-hydroxylation of 3. However, the catalytic efficiency of CYP 2C18 for that reaction was considerably higher (kcat/KM value being 3-4 orders of magnitude larger than those found for CYP 2C8 and 2C19). Several human P450s exhibited small activities for the oxidative O-dealkylation of 3. The four recombinant CYP 2Cs were the best catalysts for that reaction (kcat between 1 and 5 min-1) when compared to all the P450s that were tested, even though it is a minor reaction in the case of CYP 2C18. All these results show that compound 3 is a new, selective, and highly efficient substrate for CYP 2C18 that should be useful for the study of this P450 in various organs and tissues. They also suggest some key differences between the active sites of CYP 2C9 and CYP 2C18 for substrate recognition.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/enzimologia , Esteroide 16-alfa-Hidroxilase , Esteroide Hidroxilases/metabolismo , Ticrinafeno/síntese química , Ticrinafeno/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/genética , Humanos , Hidroxilação , Fígado/metabolismo , Oxigenases de Função Mista/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta , Esteroide Hidroxilases/química , Esteroide Hidroxilases/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Tiofenos/química , Tiofenos/metabolismo
13.
Chem Res Toxicol ; 12(3): 286-96, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10077492

RESUMO

Tienilic acid (TA) is responsible for an immune-mediated drug-induced hepatitis in humans, while its isomer (TAI) triggers a direct hepatitis in rats. In this study, we describe an immunological approach developed for studying the specificity of the covalent binding of these two compounds. For this purpose, two different coupling strategies were used to obtain TA-carrier protein conjugates. In the first strategy, the drug was linked through its carboxylic acid function to amine residues of carrier proteins (BSA-N-TA and casein-N-TA), while in the second strategy, the thiophene ring of TA was attached to proteins through a short 3-thiopropanoyl linker, the corresponding conjugates (BSA-S-5-TA and betaLG-S-5-TA) thus preferentially presenting the 2, 3-dichlorophenoxyacetic moiety of the drug for antibody recognition. The BSA-S-5-TA conjugate proved to be 30 times more immunogenic than BSA-N-TA. Anti-TA-protein adduct antibodies were obtained after immunization of rabbits with BSA-S-5-TA (1/35000 titer against betaLG-S-5-TA in ELISA). These antibodies strongly recognized the 2, 3-dichlorophenoxyacetic moiety of TA but poorly the part of the drug engaged in the covalent binding with the proteins. This powerful tool was used in immunoblots to compare TA or TAI adduct formation in human liver microsomes as well as on microsomes from yeast expressing human liver cytochrome P450 2C9. TA displayed a highly specific covalent binding focused on P450 2C9 which is the main cytochrome P450 responsible for its hepatic activation in humans. On the contrary, TAI showed a nonspecific alkylation pattern, targeting many proteins upon metabolic activation. Nevertheless, this nonspecific covalent binding could be completely shifted to a thiol trapping agent like GSH. The difference in alkylation patterns for these two compounds is discussed with regard to their distinct toxicities. A relationship between the specific covalent binding of P450 2C9 by TA and the appearance of the highly specific anti-LKM2 autoantibodies (known to specifically recognize P450 2C9) in patients affected with TA-induced hepatitis is strongly suggested.


Assuntos
Anticorpos , Hidrocarboneto de Aril Hidroxilases , Proteínas de Transporte/metabolismo , Fígado/metabolismo , Esteroide 16-alfa-Hidroxilase , Ticrinafeno/metabolismo , Animais , Especificidade de Anticorpos , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Caseínas/química , Caseínas/imunologia , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Imunoglobulinas/química , Imunoglobulinas/isolamento & purificação , Técnicas In Vitro , Fígado/química , Fígado/efeitos dos fármacos , Masculino , Microssomos Hepáticos/química , Coelhos , Ratos , Ratos Sprague-Dawley , Saccharomyces cerevisiae/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/imunologia , Esteroide Hidroxilases/metabolismo , Ticrinafeno/química , Ticrinafeno/imunologia , Ticrinafeno/toxicidade
14.
Eur J Drug Metab Pharmacokinet ; 23(4): 443-51, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-10323325

RESUMO

Immune-related drug responses are one of the most common sources of idiosyncratic toxicity. A number of organs may be the target of such reactions; however, this review concentrates mostly on the liver. Drug-induced hepatitis is generally divided into two categories: acute hepatitis in which the drug or a metabolite destroys a vital target in the cell; immunoallergic hepatitis in which the drug triggers an adverse immune response directed against the liver. Their clinical features are: a) low frequency; b) dose independence; c) typical immune system manifestations such as fever, eosinophilia; d) delay between the initiation of treatment and onset of the disease; e) a shortened delay upon rechallenge; and f) occasional presence of autoantibodies in the serum of patients. Such signs have been found in cases of hepatitis triggered by drugs such as halothane, tienilic acid, dihydralazine and anticonvulsants. They will be taken as examples to demonstrate the recent progress made in determining the mechanisms responsible for the disease. The following mechanisms have been postulated: 1) the drug is first metabolized into a reactive metabolite which binds to the enzyme that generated it; 2) this produces a neoantigen which, once presented to the immune system, might trigger an immune response characterized by 3) the production of antibodies recognizing both the native and/or the modified protein; 4) rechallenge leads to increased neoantigen production, a situation in which the presence of antibodies may induce cytolysis. Toxicity is related to the nature and amount of neoantigen and also to other factors such as the individual immune system. An effort should be made to better understand the precise mechanisms underlying this kind of disease and thereby identify the drugs at risk; and also the neoantigen processes necessary for their introduction into the immune system. An animal model would be useful in this regard.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/imunologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hepatite Autoimune/imunologia , Formação de Anticorpos/efeitos dos fármacos , Doença Hepática Crônica Induzida por Substâncias e Drogas/etiologia , Di-Hidralazina/efeitos adversos , Halotano/efeitos adversos , Hepatite Autoimune/etiologia , Humanos , Iproniazida/efeitos adversos , Preparações Farmacêuticas/química , Ticrinafeno/efeitos adversos
15.
Biochemistry ; 36(42): 12672-82, 1997 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-9335524

RESUMO

Purified recombinant human liver cytochrome P450 2C9 was produced, from expression of the corresponding cDNA in yeast, in quantities large enough for UV-visible and 1H NMR experiments. Its interaction with several substrates (tienilic acid and two derivatives, lauric acid and diclofenac) and with a specific inhibitor, sulfaphenazole, was studied by UV-visible and 1H NMR spectroscopy. At 27 degrees C, all those substrates led to an almost complete conversion of CYP 2C9 to high-spin (S = 5/2) CYP 2C9-substrate complexes characterized by a Soret peak at 390 nm; their KD values varied between 1 and 42 microM. On the contrary, sulfaphenazole led to a low-spin (S = 1/2) CYP 2C9 complex upon binding of its NH2 group to CYP 2C9 iron. Interactions of the five substrates with the enzyme were studied by paramagnetic relaxation effects of CYP 2C9-iron(III) on the 1H NMR spectrum of each substrate. Distances between the heme iron atom and substrate protons were calculated from the NMR data, and the orientation of the substrate relative to iron was determined from those distances. Finally, a model for substrate positioning in the CYP 2C9 active site was constructed by molecular modeling studies under the constraint of the iron-proton distances. It points out two structural characteristics for a compound to be selectively recognized by CYP 2C9: (i) the presence of an anionic site able to establish an ionic bond with a putative cationic residue of the protein and (ii) the presence of an hydrophobic zone between the substrate hydroxylation site and the anionic site. Sulfaphenazole was easily included in that model; its very high affinity for CYP 2C9 is due to a third structural feature, the presence of its NH2 function which binds to CYP 2C9 iron.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/enzimologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Conformação Proteica , Esteroide 16-alfa-Hidroxilase , Esteroide Hidroxilases/química , Esteroide Hidroxilases/metabolismo , Animais , Sítios de Ligação , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Diclofenaco/metabolismo , Humanos , Isomerismo , Cinética , Ácidos Láuricos/metabolismo , Modelos Químicos , Modelos Moleculares , NADPH-Ferri-Hemoproteína Redutase/isolamento & purificação , Ressonância Magnética Nuclear Biomolecular , Ratos , Espectrofotometria , Esteroide Hidroxilases/isolamento & purificação , Sulfafenazol/química , Sulfafenazol/metabolismo , Ticrinafeno/metabolismo
16.
Proteins ; 28(3): 388-404, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9223185

RESUMO

A computational strategy for homology modeling, using several protein structures comparison, is described. This strategy implies a formalized definition of structural blocks common to several protein structures, a new program to compare these structures simultaneously, and the use of consensus matrices to improve sequence alignment between the structurally known and target proteins. Applying this method to cytochromes P450 led to the definition of 15 substructures common to P450cam, P450BM3, and P450terp, and to proposing a 3D model of P450eryF.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Computação Matemática , Modelos Moleculares , Homologia de Sequência de Aminoácidos , Algoritmos , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Dados de Sequência Molecular , Software
17.
Chem Res Toxicol ; 9(8): 1403-13, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8951246

RESUMO

Oxidative metabolism of a 3-aroylthiophene, 1, by rat liver microsomes in the presence of mercaptoethanol as a trapping agent led to the isolation of four main compounds, 2-5, which have been isolated and characterized by UV, 1H NMR, and mass spectroscopy. They all derive from two primary metabolites, 2 and 3, which result from the nucleophilic addition of mercaptoethanol to a reactive, very electrophilic intermediate formed by sulfoxidation of the thiophene ring of 1. Further reactions of diastereoisomers 2 and 3 with mercaptoethanol led to compound 4 that is opened at the level of its thiophene ring and, eventually, to a final metabolite 5 resulting formally from the addition of mercaptoethanol on the 4, 5-double bond of the thiophene ring of 1. Compound 5 is very stable even in the presence of a large excess of mercaptoethanol. Similar reactions were observed upon microsomal oxidation of 1 in the presence of another thiol, N-acetylcysteine. Final metabolites 8a and 8b equivalent to 5 except for the replacement of its mercaptoethanol substituent with an N-acetylcysteinyl group were isolated and characterized by UV, 1H NMR, and mass spectroscopy. Interestingly, after treatment of rats with 1, metabolites 8a and 8b could be detected in urine, indicating that the successive reactions, that were observed in vitro after microsomal oxidation of 1 in the presence of a thiol-containing trapping agent, also occur in vivo, glutathione acting as a nucleophile in that case. These data provide clear evidence for the intermediate formation of a reactive. electrophilic thiophene sulfoxide in metabolic oxidation of 1 in vitro and in vivo. They also provide the first data on the complex reactivity of such thiophene sulfoxides, whose chemistry is poorly known, and on their fates in living organisms.


Assuntos
Microssomos Hepáticos/metabolismo , Sulfóxidos/química , Tiofenos/química , Animais , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Masculino , Mercaptoetanol/farmacologia , Oxirredução , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Espectrofotometria Ultravioleta
19.
Biochem Biophys Res Commun ; 218(1): 118-24, 1996 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-8573115

RESUMO

Anti-mitochondria (anti-M6) autoantibodies have been found in the serum of patients with immunoallergic iproniazid (Marsilid)-induced hepatitis, but to date the identity of the protein antigen has not been determined. Here we show, using immunoprecipitation of pargyline-labelled proteins, that among the mitochondrial proteins, liver MAO-B is specifically recognized by the sera containing anti-M6 antibodies. Moreover the enzymatic activity of MAO-B towards phenylethylamine and tyramine is also suppressed after this immunoprecipitation, contrary to the MAO-A activity towards 5-hydroxy-tryptamine. As MAO is irreversibly inhibited by iproniazid, these results suggest that the mechanism of iproniazid-induced appearance of anti-M6 antibodies could be another example of the reactive metabolite/enzyme haptenization mechanism already proposed in the case of tienilic acid for the appearance of anti-organelle antibodies in a drug-induced hepatitis.


Assuntos
Autoanticorpos , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Hipersensibilidade a Drogas , Iproniazida/imunologia , Isoenzimas/imunologia , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/imunologia , Mitocôndrias/enzimologia , Monoaminoxidase/imunologia , Especificidade de Anticorpos , Reações Antígeno-Anticorpo , Autoanticorpos/biossíntese , Feminino , Humanos , Iproniazida/efeitos adversos , Isoenzimas/metabolismo , Cinética , Fígado/enzimologia , Monoaminoxidase/metabolismo , Pargilina/metabolismo , Placenta/enzimologia , Gravidez
20.
Biochemistry ; 34(33): 10365-75, 1995 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-7654690

RESUMO

Biochemical experiments, using the well-defined human liver CYP2C9 expressed in yeast, and molecular modeling techniques were used to derive a predictive model for substrates of CYP2C9. The ability of 10 2-aroylthiophenes related to tienilic acid to act as substrates for CYP2C9 was studied. Four of them were original compounds that were synthesized and completely characterized by several spectroscopic techniques. In these 10 compounds various chemical functions, such as ester, amide, alcohol, phenol, ether or tetrazole functions, replaced the OCH2COOH function of tienilic acid. Among them, only the derivatives containing an acidic function (carboxylic acids, phenol, and tetrazole whose pKaS are 4.8, 6.3, and 3.8, respectively) underwent a 5-hydroxylation of their thiophene ring like tienilic acid. Despite their close structural analogy with tienilic acid, all of the other compounds not only did not undergo any 5-hydroxylation of their thiophene ring but also failed to act as inhibitors of CYP2C9. These results strongly suggested that the presence, at pH 7.4, of a negative charge on the substrate is a very important feature in its recognition by CYP2C9. In fact, the four new substrates of CYP2C9 described in this study, a carboxylic acid, phenol, and tetrazole derivative, each of which is related to tienilic acid, and the antiinflammatory drug, suprofen (with Km between 12 and 130 microM and kcat between 0.2 and 1.3 min-1), as well as almost all CYP2C9 substrates reported in the literature, exhibit a pKa below 7 (except phenytoin whose pKa is 8.1). They mainly exist as anions at physiological pH. By using molecular modeling techniques, 12 CYP2C9 substrates were superimposed with respect to their hydroxylation site and fitted onto templates, which were rigid molecules such as (S)-warfarin and phenytoin. It was thus possible to arrange them in order that all their anionic sites were at a distance around 4 A from a common point (a putative cationic site of the protein) in space. These results provide a model of the substrate binding site of CYP2C9, in which substrates interact through their anionic site A- with a cationic residue of the CYP2C9 protein C+. In that model, the distance between the hydroxylation site (Hy) and the anionic site (A-) is 7.8 +/- 1.6 A, and the

Assuntos
Hidrocarboneto de Aril Hidroxilases , Sistema Enzimático do Citocromo P-450/química , Fígado/enzimologia , Modelos Moleculares , Esteroide 16-alfa-Hidroxilase , Esteroide Hidroxilases/química , Ticrinafeno/metabolismo , Sítios de Ligação , Fenômenos Químicos , Físico-Química , Cristalografia por Raios X , Citocromo P-450 CYP2C9 , Sistema Enzimático do Citocromo P-450/metabolismo , Eletroquímica , Humanos , Concentração de Íons de Hidrogênio , Hidroxilação , Oxirredução , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Esteroide Hidroxilases/metabolismo , Especificidade por Substrato , Suprofeno/metabolismo , Ticrinafeno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA