Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Biol Macromol ; 269(Pt 1): 132036, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697429

RESUMO

Alpha-glucosidase inhibitors play an important role in Diabetes Mellitus (DM) treatment since they prevent postprandial hyperglycemia. The Glycoside Hydrolase family 13 (GH13) is the major family of enzymes acting on substrates containing α-glucoside linkages, such as maltose and amylose/amylopectin chains in starch. Previously, our group identified glycoconjugate 1H-1,2,3-triazoles (GCTs) inhibiting two GH13 α-glycosidases: yeast maltase (MAL12) and porcine pancreatic amylase (PPA). Here, we combined kinetic studies and computational methods on nine GCTs to characterize their inhibitory mechanism. They all behaved as reversible inhibitors, and kinetic models encompassed noncompetitive and various mechanisms of mixed-type inhibition for both enzymes. Most potent inhibitors displayed Ki values of 30 µM for MAL12 (GPESB16) and 37 µM for PPA (GPESB15). Molecular dynamics and docking simulations indicated that on MAL12, GPESB15 and GPESB16 bind in a cavity adjacent to the active site, while on the PPA, GPESB15 was predicted to bind at the entrance of the catalytic site. Notably, despite its putative location within the active site, the binding of GPESB15 does not obstruct the substrate's access to the cleavage site. Our study contributes to paving the way for developing novel therapeutic strategies for managing DM-2 through GH13 α-glycosidases inhibition.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Cinética , Ligantes , Suínos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Animais , Domínio Catalítico , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Triazóis/química , Triazóis/farmacologia , Modelos Moleculares
2.
Cell Commun Signal ; 22(1): 281, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773618

RESUMO

BACKGROUND: Restoring impaired peripheral immune tolerance is the primary challenge in treating autoimmune diseases. Our previous research demonstrated the effectiveness of small spleen peptides (SSPs), a fraction of low molecular weight proteins, in inhibiting the progression of psoriatic arthritis, even in the presence of high levels of the proinflammatory cytokine TNFα in the bloodstream. When specifically targeting dendritic cells (DCs), SSPs transform them into tolerogenic cells, which efficiently induce the development of regulatory Foxp3+ Treg cells. In this study, we provide further insights into the mechanism of action of SSPs. RESULTS: We found that SSPs stimulate the activation of the mTOR signaling pathway in dendritic cells, albeit in a different manner than the classical immunogenic stimulus LPS. While LPS-induced activation is rapid, strong, and sustained, the activity induced by SSPs is delayed, less intense, yet still significant. These distinct patterns of activation, as measured by phosphorylation of key components of the pathway are also observed in response to other immunogenic and tolerogenic stimuli such as GM-CSF + IL-4 or IL-10 and TGFß. The disparity in mTOR activation between immunogenic and tolerogenic stimuli is quantitative rather than qualitative. In both cases, mTOR activation primarily occurs through the PI3K/Akt signaling axis and involves ERK and GSK3ß kinases, with minimal involvement of AMPK or NF-kB pathways. Furthermore, in the case of SSPs, mTOR activation seems to involve adenosine receptors. Additionally, we observed that DCs treated with SSPs exhibit an energy metabolism with high plasticity, which is typical of tolerogenic cells rather than immunogenic cells. CONCLUSION: Hence, the decision whether dendritic cells enter an inflammatory or tolerogenic state seems to rely on varying activation thresholds and kinetics of the mTOR signaling pathway.


Assuntos
Células Dendríticas , Tolerância Imunológica , Transdução de Sinais , Serina-Treonina Quinases TOR , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Camundongos , Inflamação/metabolismo , Cinética , Lipopolissacarídeos/farmacologia
3.
Arch Pharm (Weinheim) ; : e2400029, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627294

RESUMO

Imatinib mesylate was the first representative BCR-ABL1 tyrosine kinase inhibitor (TKI) class for the treatment of chronic myeloid leukemia. Despite the revolution promoted by TKIs in the treatment of this pathology, a resistance mechanism occurs against all BCR-ABL1 inhibitors, necessitating a constant search for new therapeutic options. To develop new antimyeloproliferative substances, we applied a medicinal chemistry tool known as molecular hybridization to design 25 new substances. These compounds were synthesized and biologically evaluated against K562 cells, which express BCR-ABL1, a constitutively active tyrosine kinase enzyme, as well as in WSS-1 cells (healthy cells). The new compounds are conjugated hybrids that contain phenylamino-pyrimidine-pyridine (PAPP) and an isatin backbone, which are the main pharmacophoric fragments of imatinib and sunitinib, respectively. A spiro-oxindole nucleus was used as a linker because it occurs in many compounds with antimyeloproliferative activity. Compounds 2a, 2b, 3c, 4c, and 4e showed promise, as they inhibited cell viability by between 45% and 61% at a concentration of 10 µM. The CC50 of the most active substances was determined to be within 0.8-9.8 µM.

4.
Biomolecules ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672485

RESUMO

Restoring peripheral immune tolerance is crucial for addressing autoimmune diseases. An ancient mechanism in maintaining the balance between inflammation and tolerance is the ratio of extracellular ATP (exATP) and adenosine. Our previous research demonstrated the effectiveness of small spleen peptides (SSPs) in inhibiting psoriatic arthritis progression, even in the presence of the pro-inflammatory cytokine TNFα, by transforming dendritic cells (DCs) into tolerogenic cells and fostering regulatory Foxp3+ Treg cells. Here, we identified thymosins as the primary constituents of SSPs, but recombinant thymosin peptides were less efficient in inhibiting arthritis than SSPs. Since Tß4 is an ecto-ATPase-binding protein, we hypothesized that SSPs regulate exATP profiles. Real-time investigation of exATP levels in DCs revealed that tolerogenic stimulation led to robust de novo exATP synthesis followed by significant degradation, while immunogenic stimulation resulted in a less pronounced increase in exATP and less effective degradation. These contrasting exATP profiles were crucial in determining whether DCs entered an inflammatory or tolerogenic state, highlighting the significance of SSPs as natural regulators of peripheral immunological tolerance, with potential therapeutic benefits for autoimmune diseases. Finally, we demonstrated that the tolerogenic phenotype of SSPs is mainly influenced by adenosine receptors, and in vivo administration of SSPs inhibits psoriatic skin inflammation.


Assuntos
Trifosfato de Adenosina , Diferenciação Celular , Células Dendríticas , Baço , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Baço/citologia , Baço/metabolismo , Baço/efeitos dos fármacos , Baço/imunologia , Camundongos , Timosina/farmacologia , Timosina/metabolismo , Peptídeos/farmacologia , Artrite Psoriásica/tratamento farmacológico , Artrite Psoriásica/metabolismo , Artrite Psoriásica/imunologia , Humanos , Camundongos Endogâmicos C57BL , Tolerância Imunológica/efeitos dos fármacos
5.
Sci Rep ; 14(1): 1582, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238498

RESUMO

Schistosomiasis is caused by parasites of the genus Schistosoma, which infect more than 200 million people. Praziquantel (PZQ) has been the main drug for controlling schistosomiasis for over four decades, but despite that it is ineffective against juvenile worms and size and taste issues with its pharmaceutical forms impose challenges for treating school-aged children. It is also important to note that PZQ resistant strains can be generated in laboratory conditions and observed in the field, hence its extensive use in mass drug administration programs raises concerns about resistance, highlighting the need to search for new schistosomicidal drugs. Schistosomes survival relies on the redox enzyme thioredoxin glutathione reductase (TGR), a validated target for the development of new anti-schistosomal drugs. Here we report a high-throughput fragment screening campaign of 768 compounds against S. mansoni TGR (SmTGR) using X-ray crystallography. We observed 49 binding events involving 35 distinct molecular fragments which were found to be distributed across 16 binding sites. Most sites are described for the first time within SmTGR, a noteworthy exception being the "doorstop pocket" near the NADPH binding site. We have compared results from hotspots and pocket druggability analysis of SmTGR with the experimental binding sites found in this work, with our results indicating only limited coincidence between experimental and computational results. Finally, we discuss that binding sites at the doorstop/NADPH binding site and in the SmTGR dimer interface, should be prioritized for developing SmTGR inhibitors as new antischistosomal drugs.


Assuntos
Complexos Multienzimáticos , NADH NADPH Oxirredutases , Esquistossomose mansoni , Esquistossomose , Animais , Criança , Humanos , Schistosoma mansoni , Cristalografia por Raios X , NADP/metabolismo , Esquistossomose/tratamento farmacológico , Sítios de Ligação , Esquistossomose mansoni/parasitologia
6.
Mem Inst Oswaldo Cruz ; 118: e230031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37672425

RESUMO

BACKGROUND: Schistosomiasis is a neglected tropical disease caused by trematodes of the genus Schistosoma, with a limited treatment, mainly based on the use of praziquantel (PZQ). Currently, several aspartic proteases genes have already been identified within the genome of Schistosoma species. At least one enzyme encoded from this gene family (SmAP), named SmCD1, has been validated for the development of schistosomicidal drugs, since it has a key role in haemoglobin digestion by worms. OBJECTIVE: In this work, we integrated a structure-based virtual screening campaign, enzymatic assays and adult worms ex vivo experiments aiming to discover the first classes of SmCD1 inhibitors. METHODS: Initially, the 3D-structures of SmCD1, SmCD2 and SmCD3 were generated using homology modelling approach. Using these models, we prioritised 50 compounds from 20,000 compounds from ChemBridge database for further testing in adult worm aqueous extract (AWAE) and recombinant SmCD1 using enzymatic assays. FINDINGS: Seven compounds were confirmed as hits and among them, two compounds representing new chemical scaffolds, named 5 and 19, had IC50 values against SmCD1 close to 100 µM while presenting binding efficiency indexes comparable to or even higher than pepstatin, a classical tight-binding peptide inhibitor of aspartyl proteases. Upon activity comparison against mammalian enzymes, compound 50 was selective and the most potent against the AWAE aspartic protease activity (IC50 = 77.7 µM). Combination of computational and experimental results indicate that compound 50 is a selective inhibitor of SmCD2. Compounds 5, 19 and 50 tested at low concentrations (10 uM) were neither cytotoxic against WSS-1 cells (48 h) nor could kill adult worms ex-vivo, although compounds 5 and 50 presented a slight decrease on female worms motility on late incubations times (48 or 72 h). MAIN CONCLUSION: Overall, the inhibitors identified in this work represent promising hits for further hit-to-lead optimisation.


Assuntos
Inibidores de Proteases , Schistosoma mansoni , Feminino , Animais , Inibidores de Proteases/farmacologia , Mamíferos
7.
J Chem Inf Model ; 63(9): 2866-2880, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37058135

RESUMO

SARS-CoV-2 is the causative agent of COVID-19 and is responsible for the current global pandemic. The viral genome contains 5 major open reading frames of which the largest ORF1ab codes for two polyproteins, pp1ab and pp1a, which are subsequently cleaved into 16 nonstructural proteins (nsp) by two viral cysteine proteases encoded within the polyproteins. The main protease (Mpro, nsp5) cleaves the majority of the nsp's, making it essential for viral replication and has been successfully targeted for the development of antivirals. The first oral Mpro inhibitor, nirmatrelvir, was approved for treatment of COVID-19 in late December 2021 in combination with ritonavir as Paxlovid. Increasing the arsenal of antivirals and development of protease inhibitors and other antivirals with a varied mode of action remains a priority to reduce the likelihood for resistance emerging. Here, we report results from an artificial intelligence-driven approach followed by in vitro validation, allowing the identification of five fragment-like Mpro inhibitors with IC50 values ranging from 1.5 to 241 µM. The three most potent molecules (compounds 818, 737, and 183) were tested against SARS-CoV-2 by in vitro replication in Vero E6 and Calu-3 cells. Compound 818 was active in both cell models with an EC50 value comparable to its measured IC50 value. On the other hand, compounds 737 and 183 were only active in Calu-3, a preclinical model of respiratory cells, showing selective indexes twice as high as those for compound 818. We also show that our in silico methodology was successful in identifying both reversible and covalent inhibitors. For instance, compound 818 is a reversible chloromethylamide analogue of 8-methyl-γ-carboline, while compound 737 is an N-pyridyl-isatin that covalently inhibits Mpro. Given the small molecular weights of these fragments, their high binding efficiency in vitro and efficacy in blocking viral replication, these compounds represent good starting points for the development of potent lead molecules targeting the Mpro of SARS-CoV-2.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2 , Inteligência Artificial , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
8.
Mem. Inst. Oswaldo Cruz ; 118: e230031, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1506732

RESUMO

BACKGROUND Schistosomiasis is a neglected tropical disease caused by trematodes of the genus Schistosoma, with a limited treatment, mainly based on the use of praziquantel (PZQ). Currently, several aspartic proteases genes have already been identified within the genome of Schistosoma species. At least one enzyme encoded from this gene family (SmAP), named SmCD1, has been validated for the development of schistosomicidal drugs, since it has a key role in haemoglobin digestion by worms. OBJECTIVE In this work, we integrated a structure-based virtual screening campaign, enzymatic assays and adult worms ex vivo experiments aiming to discover the first classes of SmCD1 inhibitors. METHODS Initially, the 3D-structures of SmCD1, SmCD2 and SmCD3 were generated using homology modelling approach. Using these models, we prioritised 50 compounds from 20,000 compounds from ChemBridge database for further testing in adult worm aqueous extract (AWAE) and recombinant SmCD1 using enzymatic assays. FINDINGS Seven compounds were confirmed as hits and among them, two compounds representing new chemical scaffolds, named 5 and 19, had IC50 values against SmCD1 close to 100 μM while presenting binding efficiency indexes comparable to or even higher than pepstatin, a classical tight-binding peptide inhibitor of aspartyl proteases. Upon activity comparison against mammalian enzymes, compound 50 was selective and the most potent against the AWAE aspartic protease activity (IC50 = 77.7 μM). Combination of computational and experimental results indicate that compound 50 is a selective inhibitor of SmCD2. Compounds 5, 19 and 50 tested at low concentrations (10 uM) were neither cytotoxic against WSS-1 cells (48 h) nor could kill adult worms ex-vivo, although compounds 5 and 50 presented a slight decrease on female worms motility on late incubations times (48 or 72 h). MAIN CONCLUSION Overall, the inhibitors identified in this work represent promising hits for further hit-to-lead optimisation.

9.
Front Psychiatry ; 13: 960905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226111

RESUMO

Anorexia nervosa (AN) is a severe eating disorder characterized by excessive weight loss and lack of recognition of the seriousness of the current low body weight. Individuals with AN frequently exhibit an enhanced inflammatory state and altered blood levels of cytokines and chemokines. However, the expression of chemokine receptors in AN and the association with body composition parameters and treatment effects are still unknown. In this study, we examined the expression of CCR4, CCR6, CXCR3, and CXCR4 on peripheral blood T cells in female adolescents with AN before (T0, n = 24) and after 6 weeks of multimodal therapy (T1, n = 20). We also investigated their value to predict body mass index (BMI) and fat mass index (FMI) at baseline. Using multi-parameter flow cytometry, we found increased expression of CCR4, CXCR3, and CXCR4, but not CCR6, on CD4+ T cells in AN at T0 when compared to healthy controls (HC, n = 20). At T1, CXCR3 and CXCR4 expression decreased in AN. We found a close link between CCR4, CCR6 and CXCR4 expression and the adolescent mental health status in the study cohort as determined by the Strengths and Difficulties Questionnaire (SDQ). Specifically, CXCR4 expression correlated positively with emotional symptoms and peer relationship problems, as well as with the total sum score of the SDQ. In addition, CXCR4 expression on CD4+ T cells was a significant predictor of BMI and FMI in female adolescents. Our findings that CXCR4 expression on T cells is altered in adolescents with AN and predicts body composition parameters in adolescents suggest an impact of this chemokine receptor in the pathogenesis of AN.

10.
J Affect Disord ; 310: 343-353, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35526724

RESUMO

BACKGROUND: Chemokines and their receptors regulate inflammatory processes in major depressive disorder (MDD). Here, we characterize the expression pattern of the C-C chemokine receptor 4 (CCR4) and its ligands CCL17 and CCL22 in MDD and its clinical relevance in predicting disease severity. METHODS: Expression of CCR4 on peripheral blood lymphocytes and serum CCL17/CCL22 levels were measured using multiparameter flow cytometry and multiplex assays in 33 depressed inpatients at baseline (T0) and after 6-week multimodal treatment (T1) compared with 21 healthy controls (HC). Using stratified and correlation analysis, we examined the associations of CCR4-CCL17/CCL22 expression with depression severity and symptoms according to standard clinical rating scales and questionnaires. Additionally, we assessed whether polygenic risk score (PRS) for psychiatric disorders and chronotype are associated with disease status or CCR4-CCL17/CCL22 expression. Regression analysis was performed to assess the capacity of CCR4 and PRS in predicting disease severity. RESULTS: Compared with HC, MDD patients showed significantly decreased CCR4 expression on T cells (T0 and T1), whereas CCL17/CCL22 serum levels were increased. Stratified and correlation analysis revealed an association of CCR4 expression on CD4+ T cells with depression severity as well as Beck Depression Inventory-II items including loss of pleasure, agitation and cognitive deficits. CCR4 expression levels on CD4+ T cells together with cross-disorder and chronotype PRS significantly predicted disease severity. LIMITATIONS: This exploratory study with small sample size warrants future studies. CONCLUSIONS: This newly identified CCR4-CCL17/CCL22 signature and its predictive capacity for MDD severity suggest its potential functional involvement in the pathophysiology of MDD.


Assuntos
Transtorno Depressivo Maior , Receptores CCR4 , Quimiocina CCL17/metabolismo , Quimiocinas , Humanos , Linfócitos/metabolismo , Receptores CCR4/metabolismo , Linfócitos T/metabolismo
11.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35337107

RESUMO

Imatinib (IMT) is the first-in-class BCR-ABL commercial tyrosine kinase inhibitor (TKI). However, the resistance and toxicity associated with the use of IMT highlight the importance of the search for new TKIs. In this context, heterocyclic systems, such as quinoline, which is present as a pharmacophore in the structure of the TKI inhibitor bosutinib (BST), have been widely applied. Thus, this work aimed to obtain new hybrids of imatinib containing quinoline moieties and evaluate them against K562 cells. The compounds were synthesized with a high purity degree. Among the produced molecules, the inhibitor 4-methyl-N3-(4-(pyridin-3-yl)pyrimidin-2-yl)-N1-(quinolin-4-yl)benzene-1,3-diamine (2g) showed a suitable reduction in cell viability, with a CC50 value of 0.9 µM (IMT, CC50 = 0.08 µM). Molecular docking results suggest that the interaction between the most active inhibitor 2g and the BCR-ABL1 enzyme occurs at the bosutinib binding site through a competitive inhibition mechanism. Despite being less potent and selective than IMT, 2g is a suitable prototype for use in the search for new drugs against chronic myeloid leukemia (CML), especially in patients with acquired resistance to IMT.

12.
Mem Inst Oswaldo Cruz ; 117: e210402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35293482

RESUMO

Diseases caused by trypanosomatid parasites affect millions of people mainly living in developing countries. Novel drugs are highly needed since there are no vaccines and available treatment has several limitations, such as resistance, low efficacy, and high toxicity. The drug discovery process is often analogous to finding a needle in the haystack. In the last decades a so-called rational drug design paradigm, heavily dependent on computational approaches, has promised to deliver new drugs in a more cost-effective way. Paradoxically however, the mainstay of these computational methods is data-driven, meaning they need activity data for new compounds to be generated and available in databases. Therefore, high-throughput screening (HTS) of compounds still is a much-needed exercise in drug discovery to fuel other rational approaches. In trypanosomatids, due to the scarcity of validated molecular targets and biological complexity of these parasites, phenotypic screening has become an essential tool for the discovery of new bioactive compounds. In this article we discuss the perspectives of phenotypic HTS for trypanosomatid drug discovery with emphasis on the role of image-based, high-content methods. We also propose an ideal cascade of assays for the identification of new drug candidates for clinical development using leishmaniasis as an example.


Assuntos
Ensaios de Triagem em Larga Escala , Leishmaniose , Bioensaio , Desenho de Fármacos , Descoberta de Drogas , Humanos
13.
Molecules ; 27(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35164014

RESUMO

Tyrosine kinase enzymes are among the primary molecular targets for the treatment of some human neoplasms, such as those in lung cancer and chronic myeloid leukemia. Mutations in the enzyme domain can cause resistance and new inhibitors capable of circumventing these mutations are highly desired. The objective of this work was to synthesize and evaluate the antiproliferative ability of ten new analogs that contain isatins and the phenylamino-pyrimidine pyridine (PAPP) skeleton, the main pharmacophore group of imatinib. The 1,2,3-triazole core was used as a spacer in the derivatives through a click chemistry reaction and gave good yields. All the analogs were tested against A549 and K562 cells, lung cancer and chronic myeloid leukemia (CML) cell lines, respectively. In A549 cells, the 3,3-difluorinated compound (3a), the 5-chloro-3,3-difluorinated compound (3c) and the 5-bromo-3,3-difluorinated compound (3d) showed IC50 values of 7.2, 6.4, and 7.3 µM, respectively, and were all more potent than imatinib (IC50 of 65.4 µM). In K562 cells, the 3,3-difluoro-5-methylated compound (3b) decreased cell viability to 57.5% and, at 10 µM, showed an IC50 value of 35.8 µM (imatinib, IC50 = 0.08 µM). The results suggest that 3a, 3c, and 3d can be used as prototypes for the development of more potent and selective derivatives against lung cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Neoplasias/patologia , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mesilato de Imatinib/análogos & derivados , Mesilato de Imatinib/uso terapêutico , Células K562 , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
14.
Transplantation ; 106(3): 641-647, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33756548

RESUMO

BACKGROUND: Heart transplant (HT) recipients may be at higher risk of acquiring SARS-CoV-2 infection and developing critical illness. The aim of this study is to describe characteristics and outcomes of HT recipients infected by SARS-COV-2, from a high-volume transplant center. METHODS: We have described data of all adult HT recipients with confirmed coronavirus disease 2019 by RT-PCR in nasopharyngeal samples from April 5, 2020, to January 5, 2021. Outcomes and follow-up were recorded until February 5, 2021. RESULTS: Forty patients were included. Twenty-four patients (60%) were men; the median age was 53 (40-60) y old; median HT time was 34 mo; and median follow-up time 162 d. The majority needed hospitalization (83%). Immunosuppressive therapy was reduced/withdrawn in the majority of patients, except from steroids, which were maintained. Seventeen patients (42.5%) were classified as having severe disease according to the ordinal scale developed by the World Health Organization Committee. They tended to have lower absolute lymphocyte count (P < 0.001) during follow-up when compared with patients with mild disease. Thirty-day mortality was 12.5%. However, a longer follow-up revealed increased later mortality (27.5%), with median time to death around 35 d. Bacterial nosocomial infections were a leading cause of death. Cardiac allograft rejection (10%) and ventricular dysfunction (12.5%) were also not negligible. CONCLUSIONS: Major findings of this study corroborate other cohorts' results, but it also reports significant rate of later events, suggesting that a strict midterm surveillance is advisable to HT recipients with coronavirus disease 2019.


Assuntos
COVID-19 , Transplante de Coração , Adulto , Transplante de Coração/efeitos adversos , Hospitalização , Humanos , Terapia de Imunossupressão , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Transplantados
15.
Crit Rev Food Sci Nutr ; 62(26): 7222-7241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33890518

RESUMO

Natural products have been studied to reveal new therapies against human dysfunctions since they present several medicinal properties. Caffeine, theobromine and (+)-catechin are remarkable natural agents in the class of methylxanthines and flavonoids. These bioactive molecules have several biological activities, for instance, antioxidant, anti-inflammatory, and antitumor capacity. In this sense, studies focusing on these molecules have been performed to discover new treatments against diseases, such as cancer. Cancer is a serious public health problem worldwide responsible for more than 70% of all deaths globally. Industrialized products associated with a sedentary lifestyle and a diet low in antioxidants are related to neoplasms development. Unfortunately, many types of cancers are extremely aggressive and untreatable since, in many cases, they are resistant to chemotherapy. Therefore, revealing new strategies to block cancer growth is one of the biggest challenges to science. In this context, despite the known anticancer actions of caffeine, theobromine and (+)-catechin, it is still essential to elucidate the causal antitumor mechanism of these molecules by analyzing the dysfunctional cancer pathways associated with the hallmarks of cancer. Hence, this review aims to describe the anticancer activity of caffeine, theobromine, and (+)-catechin against the different hallmarks and enabling characteristics of cancer.


Assuntos
Produtos Biológicos , Catequina , Neoplasias , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Cafeína/farmacologia , Catequina/farmacologia , Catequina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Teobromina/farmacologia
16.
Mol Ther ; 30(2): 745-762, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34450252

RESUMO

The major challenge in the treatment of autoimmune diseases is the restoration of the impaired peripheral immune tolerance that always accompanies the development of such diseases. Here, we show that small splenic peptides (SSPs) of whole spleen extract efficiently suppress the development of psoriatic arthritis in vivo, even in the presence of sustained levels of pro-inflammatory cytokines. SSPs target dendritic cells (DCs) and convert them into tolerogenic cells, which in turn differentiate naive CD4+ cells into Foxp3-expressing T regulatory cells (Tregs). The latter requires direct contact between SSP-activated DCs and naive CD4+ T cells via PD-1 and CTLA4 immune checkpoint receptors of T cells. Finally, depletion of Foxp3+ Tregs in vivo abrogated the protective effect of SSPs on psoriatic arthritis development. We hypothesize that SSPs represent an intrinsic component of the adaptive immune system responsible for the physiological maintenance of peripheral tolerance and that therapeutically administered SSPs are able to restore imbalanced peripheral tolerance in autoimmune diseases.


Assuntos
Artrite Psoriásica , Tolerância Imunológica , Artrite Psoriásica/terapia , Citocinas , Células Dendríticas , Humanos , Tolerância Periférica , Baço , Linfócitos T Reguladores
17.
Mem. Inst. Oswaldo Cruz ; 117: e210402, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1365147

RESUMO

Diseases caused by trypanosomatid parasites affect millions of people mainly living in developing countries. Novel drugs are highly needed since there are no vaccines and available treatment has several limitations, such as resistance, low efficacy, and high toxicity. The drug discovery process is often analogous to finding a needle in the haystack. In the last decades a so-called rational drug design paradigm, heavily dependent on computational approaches, has promised to deliver new drugs in a more cost-effective way. Paradoxically however, the mainstay of these computational methods is data-driven, meaning they need activity data for new compounds to be generated and available in databases. Therefore, high-throughput screening (HTS) of compounds still is a much-needed exercise in drug discovery to fuel other rational approaches. In trypanosomatids, due to the scarcity of validated molecular targets and biological complexity of these parasites, phenotypic screening has become an essential tool for the discovery of new bioactive compounds. In this article we discuss the perspectives of phenotypic HTS for trypanosomatid drug discovery with emphasis on the role of image-based, high-content methods. We also propose an ideal cascade of assays for the identification of new drug candidates for clinical development using leishmaniasis as an example.

18.
Beilstein J Org Chem ; 17: 2260-2269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621389

RESUMO

The enzyme tyrosine kinase BCR-Abl-1 is the main molecular target in the treatment of chronic myeloid leukemia and can be competitively inhibited by tyrosine kinase inhibitors such as imatinib. New potential competitive inhibitors were synthesized using the (phenylamino)pyrimidine-pyridine (PAPP) group as a pharmacophoric fragment, and these compounds were biologically evaluated. The synthesis of twelve new compounds was performed in three steps and assisted by microwave irradiation in a 1,3-dipolar cycloaddition to obtain 1,2,3-triazole derivatives substituted on carbon C-4 of the triazole nucleus. All compounds were evaluated for their inhibitory activities against a chronic myeloid leukemia cell line (K562) that expresses the enzyme tyrosine kinase BCR-Abl-1 and against healthy cells (WSS-1) to observe their selectivity. Three compounds showed promising results, with IC50 values between 1.0 and 7.3 µM, and were subjected to molecular docking studies. The results suggest that such compounds can interact at the same binding site as imatinib, probably sharing a competitive inhibition mechanism. One compound showed the greatest interaction affinity for BCR-Abl-1 in the docking studies.

19.
Front Immunol ; 12: 642383, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135888

RESUMO

Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.


Assuntos
Inteligência Artificial , Descoberta de Drogas/métodos , Schistosoma/efeitos dos fármacos , Esquistossomose/tratamento farmacológico , Esquistossomicidas , Animais , Humanos
20.
Cells ; 10(4)2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921690

RESUMO

Affective disorders (AD) including major depressive disorder (MDD) and bipolar disorder (BD) are common mood disorders associated with increased disability and poor health outcomes. Altered immune responses characterized by increased serum levels of pro-inflammatory cytokines and neuroinflammation are common findings in patients with AD and in corresponding animal models. Dendritic cells (DCs) represent a heterogeneous population of myeloid cells that orchestrate innate and adaptive immune responses and self-tolerance. Upon sensing exogenous and endogenous danger signals, mature DCs secrete proinflammatory factors, acquire migratory and antigen presenting capacities and thus contribute to neuroinflammation in trauma, autoimmunity, and neurodegenerative diseases. However, little is known about the involvement of DCs in the pathogenesis of AD. In this review, we summarize the current knowledge on DCs in peripheral immune responses and neuroinflammation in MDD and BD. In addition, we consider the impact of DCs on neuroinflammation and behavior in animal models of AD. Finally, we will discuss therapeutic perspectives targeting DCs and their effector molecules in mood disorders.


Assuntos
Células Dendríticas/imunologia , Imunidade , Inflamação/imunologia , Transtornos do Humor/imunologia , Animais , Comportamento , Depressão/imunologia , Humanos , Inflamação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA