Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 14: 645, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714132

RESUMO

The brain continuously receives input from the internal and external environment. Using this information, the brain exerts its influence on both itself and the body to facilitate an appropriate response. The dynamic interplay between the brain and the heart and how external conditions modulate this relationship deserves attention. In high-stress situations, synchrony between various brain regions such as the prefrontal cortex and the heart may alter. This flexibility is believed to facilitate transitions between functional states related to cognitive, emotional, and especially autonomic activity. This study examined the dynamic temporal functional association of heart rate variability (HRV) with the interaction between three main canonical brain networks in 38 healthy male subjects at rest and directly after a psychosocial stress task. A sliding window approach was used to estimate the functional connectivity (FC) among the salience network (SN), central executive network (CEN), and default mode network (DMN) in 60-s windows on time series of blood-oxygen-level dependent (BOLD) signal. FC between brain networks was calculated by Pearson correlation. A multilevel linear mixed model was conducted to examine the window-by-window association between the root mean square of successive differences between normal heartbeats (RMSSD) and FC of network-pairs across sessions. Our findings showed that the minute-by-minute correlation between the FC and RMSSD was significantly stronger between DMN and CEN than for SN and CEN in the baseline session [b = 4.36, t(5025) = 3.20, p = 0.006]. Additionally, this differential relationship between network pairs and RMSSD disappeared after the stress task; FC between DMN and CEN showed a weaker correlation with RMSSD in comparison to baseline [b = -3.35, t(5025) = -3.47, p = 0.006]. These results suggest a dynamic functional interplay between HRV and the functional association between brain networks that varies depending on the needs created by changing conditions.

2.
Sci Rep ; 10(1): 3802, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123197

RESUMO

Social stress contributes to major societal health burdens, such as anxiety disorders and nervousness. Nx4 has been found to modulate stress responses. We investigated whether dampening of such responses is associated with neuronal correlates in brain regions involved in stress and anxiety. In a randomized, placebo-controlled, double-blind, cross-over trial, 39 healthy males took a single dose (three tablets) of either placebo or Nx4, 40 to 60 minutes before an fMRI scan session. We here report on drug effects on amygdala responses during a face-matching task, which was performed during a complex test battery further including resting-state brain connectivity and a social stress experiment. The first of the Primary Outcomes, defined in a hierarchical order, concerned reduced amygdala effects after intake of verum compared to placebo. We found a statistically significant reduction in differential activations in the left amygdala for the contrast negative faces versus forms during verum versus placebo condition. Our results indicate that effects of Nx4 can be monitored in the brain. Previously noted effects on stress responses may thus be modulated by affective brain regions including the amygdala.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiopatologia , Voluntários Saudáveis , Relações Interpessoais , Imageamento por Ressonância Magnética , Extratos Vegetais/farmacologia , Estresse Psicológico/fisiopatologia , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Estresse Psicológico/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA