Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 665: 124723, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39299357

RESUMO

Freeze-induced stress causing aggregation of proteins has typically been primarily attributed to the ice-water interface. However, we hypothesize that the underlying observed and perceived detrimental effect of ice is, to some extent, attributed to air bubbles expelled from ice crystal lattices or to nanobubbles existing prior to freezing. The reduction of dissolved air was achieved via a deaeration process by placing samples in a reduced pressure chamber, while the reduction of nanobubbles was achieved by filtering samples via a syringe filter. The results showed that the reduction of both dissolved air molecules and stable colloidal nanobubbles in a bovine IgG solution prior to freezing led to a significant decrease in aggregation after thawing compared to untreated samples (∼6,000 vs. âˆ¼ 40,000 particles/mL at a freezing rate of 100 K/s, respectively). The deaeration-filtration treatment works additively with cryoprotectants such as trehalose, further reducing the freeze-induced aggregation of IgG. The results also demonstrated that air-water interfacial aggregation of IgG in bulk liquid samples is a time-dependent process. The number of IgG subvisible particles increased with time and temperature, suggesting that random collisions of denatured molecules promoted the formation of aggregates with spherical morphology. In contrast, the IgG subvisible count after freeze-thawing had already reached its nominal value, suggesting a time-independent process where denatured protein molecules were compressed between ice crystals into filament-like aggregates. In summary, the findings shift the current paradigm from ice crystals being the main destabilizing factor during freezing to air bubbles, although the two are intertwined. From a translational aspect, this study underscores the value of deaeration-filtration as an essential supplemental process that can be applied in addition to formulation approaches such as the use of cryoprotectants to further reduce freezing stress on proteins and increase their stability.


Assuntos
Ar , Congelamento , Gelo , Imunoglobulina G , Agregados Proteicos , Água , Imunoglobulina G/química , Água/química , Animais , Bovinos , Crioprotetores/química , Trealose/química
2.
J Control Release ; 375: 829-838, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39293526

RESUMO

Messenger RNA (mRNA) vaccines have revolutionized the fight against infectious diseases and are poised to transform other therapeutic areas. Lipid nanoparticles (LNP) represent the most successful delivery system for mRNA. While the mRNA-LNP products currently in clinics are stored as frozen suspensions, there is evidence that freeze-drying mRNA-LNP into dry powders can potentially enable their storage and handling at non-freezing temperatures. Previously, we successfully applied thin-film freeze-drying (TFFD) to transform a polyadenylic acid [poly(A)]-LNP formulation from a liquid suspension to dry powders. The poly(A)-LNP were structurally multilamellar spheres without blebs, but the mRNA vaccines in clinics are comprised of mRNA-LNP that are structurally spheres surrounded by a unilamellar lipid bilayer, with some containing blebs, and it was reported that the presence of blebs increases the sensitivity of mRNA-LNP to freeze-drying-induced stress. In the present study, using an influenza A virus hemagglutinin (HA) mRNA in LNP that were structurally similar to that in the COVID-19 mRNA vaccines currently in clinic, we studied the effect of TFFD on the physical properties, internal structure, as well as immunogenicity of the HA mRNA-LNP vaccine. We concluded that TFFD can be utilized to prepare dry powders of the HA mRNA-LNP, but a sufficient amount of excipients were needed to minimize changes in the physical properties, structure, and immunogenicity of the HA mRNA-LNP vaccine.


Assuntos
Liofilização , Vacinas contra Influenza , Nanopartículas , Vacinas de mRNA , Nanopartículas/química , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Animais , Lipídeos/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Camundongos , Humanos , Camundongos Endogâmicos BALB C , Lipossomos
3.
Int J Pharm ; 663: 124576, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39134288

RESUMO

Extracellular vesicles (EVs) have emerged as a promising drug delivery system. Connectosomes are a specialized type of EVs that contain connexins in their membranes. Connexin is a surface transmembrane protein that forms connexin hemichannels. When a connexin hemichannel on a connectosome docks with another connexin hemichannel of a target cell, they form a gap junction that allows direct intracellular delivery of therapeutic cargos from within the connectosome to the cytoplasm of the recipient cell. In the present study, we tested the feasibility of converting connectosomes into dry powders by (thin-film) freeze-drying to enable their potential storage in temperatures higher than the recommended -80 °C, while maintaining their activity. Connectosomes were isolated from a genetically engineered HeLa cell line that overexpressing connexin-43 subunit protein tagged with red fluorescence protein. To facilitate the testing of the function of the connectosomes, they were loaded with calcein green dye. Calcein green-loaded connectosomes were thin-film freeze-dried with trehalose alone or trehalose and a polyvinylpyrrolidone polymer as lyoprotectant(s) to produce amorphous powders with high glass transition temperatures (>100 °C). Thin-film freeze-drying did not significantly change the morphology and structure of the connectosomes, nor their particle size distribution. Based on data from confocal microscopy, flow cytometry, and fluorescence spectrometry, the connexin hemichannels in the connectosomes reconstituted from the thin-film freeze-dried powder remained functional, allowing the passage of calcein green through the hemichannels and the release of the calcein green from the connectosomes when the channels were opened by chelating calcium in the reconstituted medium. The function of connectosomes was assessed after one month storage at different temperatures. The connexin hemichannels in connectosomes in liquid lost their function when stored at -19.5 ± 2.2 °C or 6.0 ± 0.5 °C for a month, while those in dry powder form remained functional under the same storage conditions. Finally, using doxorubicin-loaded connectosomes, we showed that the connectosomes reconstituted from thin-film freeze-dried powder remained pharmacologically active. These findings demonstrate that (thin-film) freeze-drying represents a viable method to prepare stable and functional powders of EVs that contain connexins in their membranes.


Assuntos
Vesículas Extracelulares , Liofilização , Pós , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Células HeLa , Conexina 43/metabolismo , Trealose/química , Fluoresceínas/química , Povidona/química , Conexinas/metabolismo , Tamanho da Partícula
4.
Pharm Res ; 41(3): 501-512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326530

RESUMO

PURPOSE: This study aimed to test the feasibility of using Small Angle X-ray Scattering (SAXS) coupled with Density from Solution Scattering (DENSS) algorithm to characterize the internal architecture of messenger RNA-containing lipid nanoparticles (mRNA-LNPs). METHODS: The DENSS algorithm was employed to construct a three-dimensional model of average individual mRNA-LNP. The reconstructed models were cross validated with cryogenic transmission electron microscopy (cryo-TEM), and dynamic light scattering (DLS) to assess size, morphology, and internal structure. RESULTS: Cryo-TEM and DLS complemented SAXS, revealed a core-shell mRNA-LNP structure with electron-rich mRNA-rich region at the core, surrounded by lipids. The reconstructed model, utilizing the DENSS algorithm, effectively distinguishes mRNA and lipids via electron density mapping. Notably, DENSS accurately models the morphology of the mRNA-LNPs as an ellipsoidal shape with a "bleb" architecture or a two-compartment structure with contrasting electron densities, corresponding to mRNA-filled and empty lipid compartments, respectively. Finally, subtle changes in the LNP structure after three freeze-thaw cycles were detected by SAXS, demonstrating an increase in radius of gyration (Rg) associated with mRNA leakage. CONCLUSION: Analyzing SAXS profiles based on DENSS algorithm to yield a reconstructed electron density based three-dimensional model can be a useful physicochemical characterization method in the toolbox to study mRNA-LNPs and facilitate their development.


Assuntos
Elétrons , Lipossomos , Nanopartículas , Raios X , Espalhamento a Baixo Ângulo , RNA Mensageiro/química , Difração de Raios X , Nanopartículas/química , Lipídeos/química , RNA Interferente Pequeno/química
5.
Int J Pharm ; 650: 123688, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38070660

RESUMO

A library of 16 lipid nanoparticle (LNP) formulations with orthogonally varying lipid molar ratios was designed and synthesized, using polyadenylic acid [poly(A)] as a model for mRNA, to explore the effect of lipid composition in LNPs on (i) the initial size of the resultant LNPs and encapsulation efficiency of RNA and (ii) the sensitivity of the LNPs to various conditions including cold storage, freezing (slow vs. rapid) and thawing, and drying. Least Absolute Shrinkage and Selection Operator (LASSO) regression was employed to identify the optimal lipid molar ratios and interactions that favorably affect the physical properties of the LNPs and enhance their stability in various stress conditions. LNPs exhibited distinct responses under each stress condition, highlighting the effect of lipid molar ratios and lipid interactions on the LNP physical properties and stability. It was then demonstrated that it is feasible to use thin-film freeze-drying to convert poly(A)-LNPs from liquid dispersions to dry powders while maintaining the integrity of the LNPs. Importantly, the residual moisture content in LNP dry powders significantly affected the LNP integrity.Residual moisture content of ≤ 0.5% or > 3-3.5% w/w negatively affected the LNP size and/or RNA encapsulation efficiency, depending on the LNP composition. Finally, it was shown that the thin-film freeze-dried LNP powders have desirable aerosol properties for potential pulmonary delivery. It was concluded that Design of Experiments can be applied to identify mRNA-LNP formulations with the desired physical properties and stability profiles. Additionally, optimizing the residual moisture content in mRNA-LNP dry powders during (thin-film) freeze-drying is crucial to maintain the physical properties of the LNPs.


Assuntos
Lipídeos , Congelamento , RNA Interferente Pequeno/genética , RNA Mensageiro
6.
Int J Pharm X ; 6: 100197, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37521246

RESUMO

When preparing siRNA-encapsulated solid lipid nanoparticles (siRNA-SLNs), cationic lipids are commonly included to condense and lipophilize the siRNA and thus increase its encapsulation in the SLNs. Unfortunately, cationic lipids also contribute significantly to the cytotoxicity and proinflammatory activity of the SLNs. Previously, our group developed a TNF-α siRNA-SLN formulation that showed strong activity against rheumatoid arthritis unresponsive to methotrexate in a mouse model. The siRNA-SLNs were composed of lecithin, cholesterol, an acid-sensitive stearoyl polyethylene glycol (2000) conjugate, and siRNA complexes with 1,2-dioleoyl-3trimethylammonium-propane (DOTAP), a cationic lipid. The present study was designed to study the effect of the amount of DOTAP used to complex the siRNA on the cytotoxicity and proinflammatory activity of the resultant siRNA-SLNs. A small library of siRNA-SLNs prepared at various ratios of DOTAP to siRNA (i.e., nitrogen to phosphate (N/P) ratios ranging from 34:1 to 1:1) were prepared and characterized, and the cytotoxicity and proinflammatory activity of selected formulations were evaluated in cell culture. As expected, the siRNA-SLNs prepared at the highest N/P ratio showed the highest cytotoxicity to J774A.1 macrophage cells and reducing the N/P ratio lowered the cytotoxicity of the siRNA-SLNs. Unexpectedly, the cytotoxicity of the siRNA-SLNs reached the lowest at the N/P ratios of 16:1 and 12:1, and further reducing the N/P ratio resulted in siRNA-SLNs with increased cytotoxicity. For example, siRNA-SLNs prepared at the N/P ratio of 1:1 was more cytotoxic than the ones prepared at the N/P ratio 12:1. This finding was confirmed using neutrophils differentiated from mouse MPRO cell line. The DOTAP release from the siRNA-SLNs prepared at the N/P ratio of 1:1 was faster than from the ones prepared at the N/P ratio of 12:1. The siRNA-SLNs prepared at N/P ratios of 12:1 and 1:1 showed comparable proinflammatory activities in both macrophages and neutrophils. Additionally, the TNF-α siRNA-SLNs prepared at the N/P ratios of 12:1 and 1:1 were equally effective in downregulating TNF-α expression in J774A.1 macrophages. In conclusion, it was demonstrated that at least in vitro in cell culture, reducing the amount of cationic lipids used when preparing siRNA-SLNs can generally help reduce the cytotoxicity of the resultant SLNs, but siRNA-SLNs prepared with the lowest N/P ratio are not necessarily the least cytotoxic and proinflammatory.

7.
Pharm Res ; 40(5): 1141-1152, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36703028

RESUMO

PURPOSE: This study was designed to test the feasibility of using thin-film freezing (TFF) to prepare aerosolizable dry powders of plasmid DNA (pDNA) for pulmonary delivery. METHODS: Dry powders of pDNA formulated with mannitol/leucine (70/30, w/w) with various drug loadings, solid contents, and solvents were prepared using TFF, their aerosol properties (i.e., mass median aerodynamic diameter (MMAD) and fine particle fraction (FPF)) were determined, and selected powders were used for further characterization. RESULTS: Of the nine dry powders prepared, their MMAD values were about 1-2 µm, with FPF values (delivered) of 40-80%. The aerosol properties of the powders were inversely correlated with the pDNA loading and the solid content in the pDNA solution before TFF. Powders prepared with Tris-EDTA buffer or cosolvents (i.e., 1,4-dioxane or tert-butanol in water), instead of water, showed slightly reduced aerosol properties. Ultimately, powders prepared with pDNA loading at 5% (w/w), 0.25% of solid content, with or without Tris-EDTA were selected for further characterization due to their overall good aerosol performance. The pDNA powders exhibited a porous matrix structure, with a moisture content of < 2% (w/w). Agarose gel electrophoresis confirmed the chemical integrity of the pDNA after it was subjected to TFF and after the TFF powder was actuated. A cell transfection study confirmed that the activity of the pDNA did not change after it was subjected to TFF. CONCLUSION: It is feasible to use TFF to produce aerosolizable pDNA dry powder for pulmonary delivery, while preserving the integrity and activity of the pDNA.


Assuntos
DNA , Água , Pós/química , Administração por Inalação , Congelamento , Ácido Edético , Aerossóis/química , DNA/genética , Plasmídeos , Água/química , Tamanho da Partícula , Inaladores de Pó Seco/métodos
8.
Int J Pharm ; 628: 122306, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36265662

RESUMO

Freezing techniques are an essential part of biologics manufacturing processes, yet the formation of ice/water interfaces can impart detrimental effects on proteins. However, the absence of chemical and structural differences between ice and liquid water poses the question as to why ice can destabilize proteins. We hypothesize that the destabilizing stress of the ice-liquid water interface does not originate from the ice-water system itself but rather from the air microbubbles present during the freezing process. As the temperature decreases, the dissolved air is expelled from the ice crystal lattices in the form of microbubbles and is subsequently trapped by the advancing ice front. This newly formed air-water interface represents an additional interfacial area for the proteins to be adsorbed onto and denatured. The result showed that freezing at âˆ¼ 1 K/s led to the formation of small circular microbubbles with diameters ranging from 100 µm to 500 µm. In contrast, slower freezing resulted in the formation of larger, elongated millimeter-size bubbles. The reduction of the number of microbubbles was carried out by the deaeration process using agitation under reduced pressure at 20 kPa. The resulting deaerated (i.e., low dissolved air) protein samples were frozen and monitored for the formation of subvisible aggregates using micro-flow imaging (MFI). The results demonstrated that deaerating the samples prior to intermediate freezing (i.e., TFF) reduced the number of aggregates for both highly surface-active and low surface-active proteins (lactoferrin and bovine IgG, respectively). This reduction was more pronounced in spray freeze drying (SFD) than thin-film freezing (TFF), and less apparent in conventional lyophilization.


Assuntos
Gelo , Microbolhas , Bovinos , Animais , Congelamento , Liofilização , Proteínas/química
9.
Lancet Reg Health West Pac ; 24: 100474, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35602004

RESUMO

Background: Nanocovax is a recombinant severe acute respiratory syndrome coronavirus 2 subunit vaccine composed of full-length prefusion stabilized recombinant SARS-CoV-2 spike glycoproteins (S-2P) and aluminium hydroxide adjuvant. Methods: We conducted a dose-escalation, open label trial (phase 1) and a randomized, double-blind, placebo-controlled trial (phase 2) to evaluate the safety and immunogenicity of the Nanocovax vaccine (in 25 mcg, 50 mcg, and 75 mcg doses, aluminium hydroxide adjuvanted (0·5 mg/dose) in 2-dose regime, 28 days apart (ClinicalTrials.gov number, NCT04683484). In phase 1, 60 participants received two intramuscular injection of the vaccine following dose-escalation procedure. The primary outcomes were reactogenicity and laboratory tests to evaluate the vaccine safety. In phase 2, 560 healthy adults received either vaccine doses similar in phase 1 (25 or 50 or 75 mcg S antigen in 0·5 mg aluminium per dose) or adjuvant (0·5 mg aluminium) in a ratio of 2:2:2:1. One primary outcome was the vaccine safety, including solicited adverse events for 7 day and unsolicited adverse events for 28 days after each injection as well as serious adverse event or adverse events of special interest throughout the study period. Another primary outcome was anti-S IgG antibody response (Index unit/ml). Secondary outcomes were surrogate virus neutralisation (inhibition percentage), wild-type SARS-CoV-2 neutralisation (dilution fold), and T-cell responses by intracellular staining for interferon gamma (IFNg). Anti-S IgG and neutralising antibody levels were compared with convalescent serum samples from symptomatic Covid-19 patients. Findings: For phase 1 study, no serious adverse events were observed for all 60 participants. Most adverse events were grade 1 and disappeared shortly after injection. For phase 2 study, after randomisation, 480 participants were assigned to receive the vaccine with adjuvant, and 80 participants were assigned to receive the placebo (adjuvant only). Reactogenicity was absent or mild in the majority of participants and of short duration (mean ≤3 days). Unsolicited adverse events were mild in most participants. There were no serious adverse events related to Nanocovax. Regarding the immunogenicity, Nanocovax induced robust anti-S antibody responses. In general, there humoral responses were similar among vaccine groups which reached their peaks at day 42 and declined afterward. At day 42, IgG levels of vaccine groups were 60·48 [CI95%: 51·12-71·55], 49·11 [41·26-58·46], 57·18 [48·4-67·5] compared to 7·10 [6·32-13·92] of convalescent samples. IgG levels reported here can be converted to WHO international standard binding antibody unit (BAU/ml) by multiplying them to a conversion factor of 21·8. Neutralising antibody titre of vaccine groups at day 42 were 89·2 [52·2-152·3], 80·0 [50·8-125.9] and 95·1 [63·1-143·6], compared to 55·1 [33·4-91·0] of the convalescent group. Interpretation: Up to day 90, Nanocovax was found to be safe, well tolerated, and induced robust immune responses. Funding: This work was funded by the Coalition for Epidemic Preparedness Innovations (CEPI), the Ministry of Science and Technology of Vietnam, and Nanogen Pharmaceutical Biotechnology JSC.

10.
Mol Pharm ; 19(7): 2662-2675, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35639017

RESUMO

Biological macromolecules, especially therapeutic proteins, are delicate and highly sensitive to denaturation from stresses encountered during the manufacture of dosage forms. Thin-film freeze-drying (TFFD) and spray freeze-drying (SFD) are two processes used to convert liquid forms of protein into dry powders. In the production of inhalable dry powders that contain proteins, these potential stressors fall into three categories based on their occurrence during the primary steps of the process: (1) droplet formation (e.g., the mechanism of droplet formation, including spray atomization), (2) freezing, and (3) frozen water removal (e.g., sublimation). This study compares the droplet formation mechanism used in TFFD and SFD by investigating the effects of spraying on the stability of proteins, using lactoferrin as a model. This study considers various perspectives on the denaturation (e.g., conformation) of lactoferrin after subjecting the protein solution to the atomization process using a pneumatic two-fluid nozzle (employed in SFD) or a low-shear drop application through the nozzle. The surface activity of lactoferrin was examined to explore the interfacial adsorption tendency, diffusion, and denaturation process. Subsequently, this study also investigates the secondary and tertiary structure of lactoferrin and the quantification of monomers, oligomers, and, ultimately, aggregates. The spraying process affected the tertiary structure more negatively than the tightly woven secondary structure, resulting in the peak position corresponding to the tryptophan (Trp) residues red-shifting by 1.5 nm. This conformational change can either (a) be reversed at low concentrations via relaxation or (b) proceed to form irreversible aggregates at higher concentrations. Interestingly, when the sample was allowed to progress into micrometer-sized aggregates, such a dramatic change was not detected using methods such as size-exclusion chromatography, polyacrylamide gel electrophoresis, and dynamic light scattering at 173°. A more complete understanding of the heterogeneous protein sample was achieved only through a combination of 173 and 13° backward and forward scattering, a combination of derived count rate measurements, and microflow imaging (MFI). After studying the impact of droplet formation mechanisms on aggregation tendency of lactoferrin, we further investigated two additional model proteins with different surface activity: bovine IgG (serving as a non surface-active negative reference), and ß-galactosidase (another surface-active protein). The results corroborated the lactoferrin findings that spray-atomization-related stress-induced protein aggregation was much more pronounced for proteins that are surface active (lactoferrin and ß-galactosidase), but it was minimal for non-surface-active protein (bovine IgG). Finally, compared to the low-shear dripping used in the TFFD process, lactoferrin underwent a relatively fast conformational change upon exposure to the high air-water interface of the two-fluid atomization nozzle used in the SFD process as compared to the low shear dripping used in the TFFD process. The interfacial-induced denaturation that occurred during spraying was governed primarily by the size of the atomized droplets, regardless of the duration of exposure to air. The percentage of denatured protein population and associated activity loss, in the case of ß-galactosidase, was determined to range from 2 to 10% depending on the air-flow rate of the spraying process.


Assuntos
Lactoferrina , Água , Animais , Bovinos , Liofilização/métodos , Imunoglobulina G , Tamanho da Partícula , Pós/química , Água/química , beta-Galactosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA