Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 9151146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507229

RESUMO

This paper devotes a new method in modeling and optimizing to handle the optimization of the XY positioning mechanism. The fitness functions and constraints of the mechanism are formulated via proposing a combination of artificial neural network (ANN) and particle swarm optimization (PSO) methods. Next, the PSO is hybridized with the grey wolf optimization, namely PSO-GWO, which is applied to three scenarios in handling the single objective function. In order to search the multiple functions for the mechanism, the multiobjective optimization genetic algorithm (MOGA) is applied to the last scenario. The achieved results showed that the fitness functions are well-formulated using the PSO-based ANN method. In the scenario 1, the stroke achieved by the PSO-GWO (1852.9842 µm) is better than that gained from the GWO (1802.8087 µm). In the scenarios 2, the stress gained from the PSO-GWO (243.3183 MPa) is lower than that achieved from the GWO (245.0401 MPa). In the scenario 3, the safety factor retrieved from the PSO-GWO (1.9767) is greater than that achieved from the GWO (1.9278). In the scenario 4, by using MOGA, the optimal results found that the stroke is about (1741.3 µm) and the safety factor is 1.8929. The prediction results are well-fitted with the numerical and experimental verifications. The results of this paper are expected to facilitate the synthesis and analysis of compliant mechanisms and related engineering designs.


Assuntos
Redes Neurais de Computação , Acidente Vascular Cerebral , Humanos , Algoritmos
2.
Sensors (Basel) ; 22(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365907

RESUMO

An XYZ compliant micropositioner has been widely mentioned in precision engineering, but the displacements in the X, Y, and Z directions are often not the same. In this study, a design and optimization for a new XYZ micropositioner are developed to obtain three same displacements in three axes. The proposed micropositioner is a planar mechanism whose advantage is a generation of three motions with only two actuators. In the design strategy, the proposed micropositioner is designed by a combination of a symmetrical four-lever displacement amplifier, a symmetrical parallel guiding mechanism, and a symmetrical parallel redirection mechanism. The Z-shaped hinges are used to gain motion in the Z-axis displacement. Four flexure right-circular hinges are combined with two rigid joints and two flexure leaf hinges to permit two large X-and-Y displacements. The symmetrical four-lever displacement amplifier is designed to increase the micropositioner's travel. The displacement sensor is built by embedding the strain gauges on the hinges of the micropositioner, which is developed to measure the travel of the micropositioner. The behaviors and performances of the micropositioner are modeled by using the Taguchi-based response surface methodology. Additionally, the geometrical factors of the XYZ micropositioner are optimized by teaching-learning-based optimization. The optimized design parameters are defined with an A of 0.9 mm, a B of 0.8 mm, a C of 0.57 mm, and a D of 0.7 mm. The safety factor gains 1.85, while the displacement achieves 515.7278 µm. The developed micropositioner is a potential option for biomedical sample testing in a nanoindentation system.


Assuntos
Materiais Biocompatíveis , Movimento (Física)
3.
Comput Intell Neurosci ; 2022: 6709464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238665

RESUMO

The nanoindentation technique is employed to characterize the behaviors of biomaterials. Nevertheless, there is a lack of development of a miniaturized precise positioner for in situ nanoindentation. Besides, modeling behaviors of the positioner are restricted due to its complex kinematic characteristics. Therefore, this paper proposes a novel compliant two degrees of freedom (dof) stage for positioning a biomaterial sample in in situ nanoindentation. In addition, a new modeling and dimensional optimization synthesis method of the stage is developed. The proposed effective methodology is developed based on a kinetostatic analysis-based calculation method, the Lagrange approach, and a neural network algorithm. With an increased advance in artificial intelligence, a neural network algorithm is proposed to extend the applicability of artificial neural networks in optimizing the parameters of the stage. First, the 2-dof stage is built via a combination of an eight-lever displacement amplifier and a symmetric parallelogram mechanism. Second, a chain of mathematical equations of the 2-dof stage is constructed using a kinetostatic analysis-based method to calculate the ratio of displacement amplification and the input stiffness of the 2-dof stage. Then, the Lagrange method is utilized to formulate the dynamic equation of the 2-dof stage. Finally, a neural network algorithm is adopted to maximize the natural first frequency of the proposed stage. The optimal results determined that the frequency of the stage can achieve a high value of 112.0995 Hz. Besides, the formed mathematical models were relatively precise by comprising the simulation verifications.


Assuntos
Inteligência Artificial , Materiais Biocompatíveis , Algoritmos , Simulação por Computador , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA