Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 17(4): e0011259, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014918

RESUMO

BACKGROUND: Diarrheagenic Escherichia coli (DEC) is a group of bacterial pathogens that causes life-threatening diarrhea in children in developing countries. However, there is limited information on the characteristics of DEC isolated from patients in these countries. A detailed genomic analysis of 61 DEC-like isolates from infants with diarrhea was performed to clarify and share the characteristics of DEC prevalent in Vietnam. PRINCIPAL FINDINGS: DEC was classified into 57 strains, including 33 enteroaggregative E. coli (EAEC) (54.1%), 20 enteropathogenic E. coli (EPEC) (32.8%), two enteroinvasive E. coli (EIEC) (3.3%), one enterotoxigenic E. coli (ETEC), and one ETEC/EIEC hybrid (1.6% each), and surprisingly into four Escherichia albertii strains (6.6%). Furthermore, several epidemic DEC clones showed an uncommon combination of pathotypes and serotypes, such as EAEC Og130:Hg27, EAEC OgGp9:Hg18, EAEC OgX13:H27, EPEC OgGp7:Hg16, and E. albertii EAOg1:HgUT. Genomic analysis also revealed the presence of various genes and mutations associated with antibiotic resistance in many isolates. Strains that demonstrate potential resistance to ciprofloxacin and ceftriaxone, drugs recommended for treating childhood diarrhea, accounted for 65.6% and 41%, respectively. SIGNIFICANCE: Our finding indicate that the routine use of these antibiotics has selected resistant DECs, resulting in a situation where these drugs do not provide in therapeutic effects for some patients. Bridging this gap requires continuous investigations and information sharing regarding the type and distribution of endemic DEC and E. albertii and their antibiotic resistance in different countries.


Assuntos
Escherichia coli Enteropatogênica , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Criança , Humanos , Lactente , Infecções por Escherichia coli/microbiologia , Vietnã/epidemiologia , Diarreia/epidemiologia , Diarreia/microbiologia , Escherichia coli Enteropatogênica/genética , Escherichia coli Enterotoxigênica/genética , Genômica
2.
J Glob Antimicrob Resist ; 28: 140-142, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35021125

RESUMO

OBJECTIVES: Tigecycline resistance mediated by the mobile tigecycline-inactivating enzyme gene tet(X) in Gram-negative bacteria is an emerging concern for global public health. However, limited information is available on the distribution of tet(X) in the natural environment. In this study, we investigated the presence of tet(X) in environmental Gram-negative bacteria. METHODS: A carbapenem- and tigecycline-resistant Shewanella xiamenensis isolate (NUITM-VS1) was obtained from an urban drainage in Hanoi, Vietnam, in March 2021. Whole-genome sequencing analysis was performed by long- and short-read sequencing, resulting in a complete genome sequence. Antimicrobial resistance genes (ARGs) in the genome were detected based on the custom ARG database, including all known tigecycline resistance genes. RESULTS: Shewanella xiamenensis isolate NUITM-VS1 harboured the tet(X4) gene and the blaOXA-48 carbapenemase gene on the chromosome. tet(X4) was flanked by IS91 family transposase genes, suggesting that the acquisition of tet(X4) was mediated by this mobile gene element (MGE), whereas no MGE was found surrounding blaOXA-48, consistent with previous findings that blaOXA-48-like ß-lactamase genes are species-specific intrinsic ARGs in Shewanella spp. CONCLUSION: To the best of our knowledge, this is the first report of a tet(X4)-harbouring Shewanella sp. isolate. Our results provide genetic evidence of the complexity of the dynamics of clinically important ARGs among bacteria in the water environment.


Assuntos
Shewanella , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Shewanella/genética , Tigeciclina , Água
3.
mSphere ; 6(4): e0059221, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34346701

RESUMO

Tigecycline is a last-resort antimicrobial against carbapenemase-producing Enterobacterales (CPE). However, mobile tigecycline resistance genes, tet(X) and tmexCD-toprJ, have emerged in China and have spread possibly worldwide. Tet(X) family proteins function as tigecycline-inactivating enzymes, and TMexCD-TOprJ complexes function as efflux pumps for tigecycline. Here, to the best of our knowledge we report a CPE isolate harboring both emerging tigecycline resistance factors for the first time. A carbapenem- and tigecycline-resistant Klebsiella aerogenes strain, NUITM-VK5, was isolated from an urban drainage in Vietnam in 2021, and a plasmid, pNUITM-VK5_mdr, cocarrying tet(X) and tmexCD3-toprJ3 along with the carbapenemase gene blaNDM-4 was identified in NUITM-VK5. pNUITM-VK5_mdr was transferred to Escherichia coli by conjugation and simultaneously conferred high-level resistance against multiple antimicrobials, including carbapenems and tigecycline. An efflux pump inhibitor reduced TMexCD3-TOprJ3-mediated tigecycline resistance, suggesting that both tigecycline resistance factors independently and additively contribute to the high-level resistance. The plasmid had the IncX3 and IncC replicons and was estimated to be a hybrid of plasmids with different backbones. Unlike IncX3 plasmids, IncC plasmids are stably maintained in an extremely broad range of bacterial hosts in humans, animals, and the environment. Thus, the future global spread of multidrug resistance plasmids such as pNUITM-VK5_mdr poses a public health crisis. IMPORTANCE Tigecycline is important as a last-resort antimicrobial and effective against antimicrobial-resistant bacteria, such as carbapenem-producing Enterobacterales (CPE), whose infections are difficult to treat with antimicrobials. Since 2019, mobile tigecycline resistance genes, tet(X) and tmexCD-toprJ, and their variants have been reported mainly from China, and it has become important to understand their epidemiological situation and detailed genetic mechanisms. In this study, we identified a bacterial isolate coharboring tet(X) and tmexCD-toprJ on the same plasmid. A Klebsiella aerogenes isolate in Vietnam carried both these tigecycline resistance genes on a transferable plasmid leading to high-level resistance to multiple clinically important antimicrobials, including carbapenem and tigecycline, and could actually transfer the plasmid to other bacteria. The spread of such a multidrug resistance plasmid among bacterial pathogens should be of great concern because there are few antimicrobials to combat bacteria that have acquired the plasmid.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Enterobacter aerogenes/efeitos dos fármacos , Enterobacter aerogenes/genética , Plasmídeos/genética , Tigeciclina/farmacologia , beta-Lactamases/genética , China , Enterobacter aerogenes/enzimologia , Infecções por Escherichia coli/microbiologia , Humanos , Infecções por Klebsiella/microbiologia , Testes de Sensibilidade Microbiana
4.
Sci Rep ; 10(1): 3243, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094438

RESUMO

In this work, two copper-based biometamaterials were engineered using leaves of water cabbage (Pistia stratiotes) and purple bauhinia (Phanera purpurea) as templates. The copper sputtering was implemented to produce a thin copper film on the surface of leaves. The scanning electron microscopy (SEM) images exhibited the root hair-like nanostructure of water cabbage leaf and single comb-like nanostructure of purple bauhinia leaf. In spite of copper coating, the leaf surfaces of water cabbage and purple bauhinia were black and exhibited excellent light absorption at visible and near infrarrred wavelengths. It was estimated that these two types of leaves could absorb roughly 90% of light. Finite-difference time-domain (FDTD) calculations predicted the low reflectance stemming from the leaf nanostructures and copper coating layer. Because of the low cost of copper as a coating metal and simple procedure, this can be a promising method for quick fabrication of a thin copper film on the leaf nanostructure for application in blackbody or as the light absorbers.


Assuntos
Biomimética , Cobre/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Folhas de Planta/ultraestrutura , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA