Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 26(20): 20064-20078, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30178413

RESUMO

The uptake, translocation, and human bioaccessibility of metals originating from atmospheric fine particulate matters (PM) after foliar exposure is not well understood. Lettuce (Lactuca sativa L.) plants were exposed to micronic PbO, CuO, and CdO particulate matters (PMs) by the foliar pathway and mature plants (6 weeks old) were analyzed in terms of: (1) metal accumulation and localization on plant leaf surface, and metal translocation factor (TF) and global enrichment factor (GEF) in the plants; (2) shoot growth, plant dry weight (DW), net photosynthesis (Pn), stomatal conductance (Gs), and fatty acid ratio; (3) metal bioaccessibility in the plants and soil; and (4) the hazard quotient (HQ) associated with consumption of contaminated plants. Substantial levels of metals were observed in the directly exposed edible leaves and newly formed leaves of lettuce, highlighting both the possible metal transfers throughout the plant and the potential for human exposure after plant ingestion. No significant changes were observed in plant biomass after exposure to PbO, CuO, and CdO-PMs. The Gs and fatty acid ratio were increased in leaves after metal exposure. A dilution effect after foliar uptake was suggested which could alleviate metal phytotoxicity to some degree. However, plant shoot growth and Pn were inhibited when the plants are exposed to PbO, and necrosis enriched with Cd was observed on the leaf surface. Gastric bioaccessibility of plant leaves is ranked: Cd > Cu > Pb. Our results highlight a serious health risk of PbO, CuO, and CdO-PMs associated with consumption of vegetables exposed to these metals, even in newly formed leaves in the case of PbO and CdO exposure. Finally, the study highlights the fate and toxicity of metal rich-PMs, especially in the highly populated urban areas which are increasingly cultivated to promote local food.


Assuntos
Poluentes Atmosféricos/farmacocinética , Poluentes Atmosféricos/toxicidade , Lactuca/efeitos dos fármacos , Metais/farmacocinética , Metais/toxicidade , Disponibilidade Biológica , Compostos de Cádmio/toxicidade , Cobre/toxicidade , Exposição Dietética , Ácidos Graxos/análise , Contaminação de Alimentos , Humanos , Chumbo/toxicidade , Lactuca/crescimento & desenvolvimento , Lactuca/metabolismo , Metais/metabolismo , Óxidos/toxicidade , Material Particulado/análise , Material Particulado/farmacocinética , Material Particulado/toxicidade , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Medição de Risco , Espectrometria por Raios X
2.
Environ Sci Pollut Res Int ; 26(20): 20092-20106, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30264340

RESUMO

The rapid industrialization and urbanization of intra- and peri-urban areas at the world scale are responsible for the degradation of the quality of edible crops, because of their contamination with airborne pollutants. Their consumption could lead to serious health risks. In this work, we aim to investigate the phytotoxicity induced by foliar transfer of atmospheric particles of industrial/urban origin. Leaves of cabbage plants (Brassica oleracea var. Prover) were contaminated with metal-rich particles (PbSO4 CuO and CdO) of micrometer size. A trichloroacetic acid (TCA) treatment was used to inhibit the synthesis of the epicuticular waxes in order to investigate their protective role against metallic particles toxicity. Besides the location of the particles on/in the leaves by microscopic techniques, photosynthetic activity measurements, genotoxicity assessment, and quantification of the gene expression have been studied for several durations of exposure (5, 10, and 15 days). The results show that the depletion of epicuticular waxes has a limited effect on the particle penetration in the leaf tissues. The stomatal openings appear to be the main pathway of particles entry inside the leaf tissues, as demonstrated by the overexpression of the BolC.CHLI1 gene. The effects of particles on the photosynthetic activity are limited, considering only the photosynthetic Fv/Fm parameter. The genotoxic effects were significant for the contaminated TCA-treated plants, especially after 10 days of exposure. Still, the cabbage plants are able to implement repair mechanisms quickly, and to thwart the physiological effects induced by the particles. Finally, the foliar contamination by metallic particles induces no serious damage to DNA, as observed by monitoring the BolC.OGG1 gene.


Assuntos
Brassica/efeitos dos fármacos , Metais/farmacocinética , Metais/toxicidade , Folhas de Planta/metabolismo , Ceras/metabolismo , Brassica/fisiologia , Compostos de Cádmio/farmacocinética , Compostos de Cádmio/toxicidade , Cobre/farmacocinética , Cobre/toxicidade , Produtos Agrícolas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Chumbo/farmacocinética , Chumbo/toxicidade , Testes de Mutagenicidade/métodos , Óxidos/farmacocinética , Óxidos/toxicidade , Material Particulado/toxicidade , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Fatores de Tempo , Ácido Tricloroacético/farmacologia
3.
Environ Sci Technol ; 51(9): 5242-5251, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28383257

RESUMO

Throughout the world, urban agriculture supplies fresh local vegetables to city populations. However, the increasing anthropogenic uses of metal-containing nanoparticles (NPs) such as CuO-NPs in urban areas may contaminate vegetables through foliar uptake. This study focused on the CuO-NP transfer processes in leafy edible vegetables (i.e., lettuce and cabbage) to assess their potential phytotoxicity. Vegetables were exposed via leaves for 5, 10, or 15 days to various concentrations of CuO-NPs (0, 10, or 250 mg per plant). Biomass and gas exchange values were determined in relation to the Cu uptake rate, localization, and Cu speciation within the plant tissues. High foliar Cu uptake occurred after exposure for 15 days for lettuce [3773 mg (kg of dry weight)-1] and cabbage [4448 mg (kg of dry weight)-1], along with (i) decreased plant weight, net photosynthesis level, and water content and (ii) necrotic Cu-rich areas near deformed stomata containing CuO-NPs observed by scanning electron microscopy and energy dispersive X-ray microanalysis. Analysis of the CuO-NP transfer rate (7.8-242 µg day-1), translocation of Cu from leaves to roots and Cu speciation biotransformation in leaf tissues using electron paramagnetic resonance, suggests the involvement of plant Cu regulation processes. Finally, a potential health risk associated with consumption of vegetables contaminated with CuO-NPs was highlighted.


Assuntos
Agricultura , Cobre/toxicidade , Microanálise por Sonda Eletrônica , Lactuca/metabolismo , Nanopartículas Metálicas/toxicidade , Óxidos
4.
Environ Geochem Health ; 36(5): 897-909, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24729051

RESUMO

At the global scale, high concentrations of particulate matter (PM) enriched with metal(loid)s are currently observed in the atmosphere of urban areas. Foliar lead uptake was demonstrated for vegetables exposed to airborne PM. Our main objective here was to highlight the health risk associated with the consumption of vegetables exposed to foliar deposits of PM enriched with the various metal(loid)s frequently observed in the atmosphere of urban areas (Cd, Sb, Zn and Pb). Leaves of mature cabbage and spinach were exposed to manufactured mono-metallic oxide particles (CdO, Sb2O3 and ZnO) or to complex process PM mainly enriched with lead. Total and bioaccessible metal(loid) concentrations were then measured for polluted vegetables and the various PM used as sources. Finally, scanning electronic microscopy coupled with energy dispersive X-ray microanalysis was used to study PM-phyllosphere interactions. High quantities of Cd, Sb, Zn and Pb were taken up by the plant leaves. These levels depended on both the plant species and nature of the PM, highlighting the interest of acquiring data for different plants and sources of exposure in order to better identify and manage health risks. A maximum of 2% of the leaf surfaces were covered with the PM. However, particles appeared to be enriched in stomatal openings, with up to 12% of their area occupied. Metal(loid) bioaccessibility was significantly higher for vegetables compared to PM sources, certainly due to chemical speciation changes. Taken together, these results confirm the importance of taking atmospheric PM into account when assessing the health risks associated with ingestion of vegetables grown in urban vegetable crops or kitchen gardens.


Assuntos
Poluentes Atmosféricos/metabolismo , Brassica/metabolismo , Metaloides/metabolismo , Material Particulado/metabolismo , Folhas de Planta/metabolismo , Spinacia oleracea/metabolismo , Cidades , Metaloides/química , Metais Pesados/química , Metais Pesados/metabolismo , Microscopia Eletrônica de Varredura , Material Particulado/análise , Estômatos de Plantas/metabolismo , Espectrometria por Raios X , Verduras
5.
Sci Total Environ ; 476-477: 667-76, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24508855

RESUMO

In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO4, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO3. In rye-grass, the changes in Pb speciation were even more egregious: Pb-cell wall and Pb-organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to better assess the health risks involved.


Assuntos
Chumbo/análise , Folhas de Planta/química , Raízes de Plantas/química , Poluentes do Solo/análise , Monitoramento Ambiental , Lactuca/química , Lolium/química , Metalurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA