Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3413, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649740

RESUMO

The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.


Assuntos
Condensados Biomoleculares , Simulação de Dinâmica Molecular , Espalhamento a Baixo Ângulo , Condensados Biomoleculares/química , Recuperação de Fluorescência Após Fotodegradação , Difração de Nêutrons , Substâncias Macromoleculares/química , Proteínas/química
2.
PNAS Nexus ; 3(3): pgae079, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463037

RESUMO

Biomolecular condensates play a major role in cell compartmentalization, besides membrane-enclosed organelles. The multivalent SLP65 and CIN85 proteins are proximal B-cell antigen receptor (BCR) signal effectors and critical for proper immune responses. In association with intracellular vesicles, the two effector proteins form phase separated condensates prior to antigen stimulation, thereby preparing B lymphocytes for rapid and effective activation upon BCR ligation. Within this tripartite system, 6 proline-rich motifs (PRMs) of SLP65 interact promiscuously with 3 SH3 domains of the CIN85 monomer, establishing 18 individual SH3-PRM interactions whose individual dissociation constants we determined. Based on these 18 dissociation constants, we measured the phase-separation properties of the natural SLP65/CIN85 system as well as designer constructs that emphasize the strongest SH3/PRM interactions. By modeling these various SLP65/CIN85 constructs with the program LASSI (LAttice simulation engine for Sticker and Spacer Interactions), we reproduced the observed phase-separation properties. In addition, LASSI revealed a deviation in the experimental measurement, which was independently identified as a previously unknown intramolecular interaction. Thus, thermodynamic properties of the individual PRM/SH3 interactions allow us to model the phase-separation behavior of the SLP65/CIN85 system faithfully.

3.
bioRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873180

RESUMO

The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.

4.
Nat Commun ; 14(1): 7678, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996438

RESUMO

Cellular matter can be organized into compositionally distinct biomolecular condensates. For example, in Ashbya gossypii, the RNA-binding protein Whi3 forms distinct condensates with different RNA molecules. Using criteria derived from a physical framework for explaining how compositionally distinct condensates can form spontaneously via thermodynamic considerations, we find that condensates in vitro form mainly via heterotypic interactions in binary mixtures of Whi3 and RNA. However, within these condensates, RNA molecules become dynamically arrested. As a result, in ternary systems, simultaneous additions of Whi3 and pairs of distinct RNA molecules lead to well-mixed condensates, whereas delayed addition of an RNA component results in compositional distinctness. Therefore, compositional identities of condensates can be achieved via dynamical control, being driven, at least partially, by the dynamical arrest of RNA molecules. Finally, we show that synchronizing the production of different RNAs leads to more well-mixed, as opposed to compositionally distinct condensates in vivo.


Assuntos
Condensados Biomoleculares , RNA , Termodinâmica
5.
Res Sq ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37886520

RESUMO

The functions of biomolecular condensates are thought to be influenced by their material properties, and these are in turn determined by the multiscale structural features within condensates. However, structural characterizations of condensates are challenging, and hence rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and bespoke coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that mimic nucleolar granular components (GCs). We show that facsimiles of GCs are network fluids featuring spatial inhomogeneities across hierarchies of length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights, extracted from a combination of approaches, suggest that condensates formed by multivalent proteins share features with network fluids formed by associative systems such as patchy or hairy colloids.

6.
Biophys J ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717144

RESUMO

Macromolecular solubility is an important contributor to the driving forces for phase separation. Formally, the driving forces in a binary mixture comprising a macromolecule dissolved in a solvent can be quantified in terms of the saturation concentration, which is the threshold macromolecular concentration above which the mixture separates into coexisting dense and dilute phases. In addition, the second virial coefficient, which measures the effective strength of solvent-mediated intermolecular interactions provides direct assessments of solvent quality. The sign and magnitude of second virial coefficients will be governed by a combination of solution conditions and the nature of the macromolecule of interest. Here, we show, using a combination of theory, simulation, and in vitro experiments, that titrations of crowders, providing they are true depletants, can be used to extract the intrinsic driving forces for macromolecular phase separation. This refers to saturation concentrations in the absence of crowders and the second virial coefficients that quantify the magnitude of the incompatibility between macromolecules and the solvent. Our results show how the depletion-mediated attractions afforded by crowders can be leveraged to obtain comparative assessments of macromolecule-specific, intrinsic driving forces for phase separation.

7.
bioRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461587

RESUMO

Macromolecular solubility is an important contributor to the driving forces for phase separation. Formally, the driving forces in a binary mixture comprising a macromolecule dissolved in a solvent can be quantified in terms of the saturation concentration, which is the threshold macromolecular concentration above which the mixture separates into coexisting dense and dilute phases. Additionally, the second virial coefficient, which measures the effective strength of solvent-mediated intermolecular interactions provides direct assessments of solvent quality. The sign and magnitude of second virial coefficients will be governed by a combination of solution conditions and the nature of the macromolecule of interest. Here, we show, using a combination of theory, simulation, and in vitro experiments, that titrations of crowders, providing they are true depletants, can be used to extract the intrinsic driving forces for macromolecular phase separation. This refers to saturation concentrations in the absence of crowders and the second virial coefficients that quantify the magnitude of the incompatibility between macromolecules and the solvent. Our results show how the depletion-mediated attractions afforded by crowders can be leveraged to obtain comparative assessments of macromolecule-specific, intrinsic driving forces for phase separation. SIGNIFICANCE: Phase separation has emerged as a process of significant relevance to sorting macromolecules into distinct compartments, thereby enabling spatial and temporal control over cellular matter. Considerable effort is being invested into uncovering the driving forces that enable the separation of macromolecular solutions into coexisting phases. At its heart, this process is governed by the balance of macromolecule-solvent, inter-macromolecule, and solvent-solvent interactions. We show that the driving forces for phase separation, including the coefficients that measure interaction strengths between macromolecules, can be extracted by titrating the concentrations of crowders that enable macromolecules to phase separate at lower concentrations. Our work paves the way to leverage specific categories of measurements for quantitative characterizations of driving forces for phase separation.

8.
Chem Rev ; 123(14): 8945-8987, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-36881934

RESUMO

Multivalent proteins and nucleic acids, collectively referred to as multivalent associative biomacromolecules, provide the driving forces for the formation and compositional regulation of biomolecular condensates. Here, we review the key concepts of phase transitions of aqueous solutions of associative biomacromolecules, specifically proteins that include folded domains and intrinsically disordered regions. The phase transitions of these systems come under the rubric of coupled associative and segregative transitions. The concepts underlying these processes are presented, and their relevance to biomolecular condensates is discussed.


Assuntos
Proteínas Intrinsicamente Desordenadas , Ácidos Nucleicos , Transição de Fase , Proteínas , Proteínas Intrinsicamente Desordenadas/metabolismo
9.
Res Sq ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798397

RESUMO

Macromolecular phase separation underlies the regulated formation and dissolution of biomolecular condensates. What is unclear is how condensates of distinct and shared macromolecular compositions form and coexist within cellular milieus. Here, we use theory and computation to establish thermodynamic criteria that must be satisfied to achieve compositionally distinct condensates. We applied these criteria to an archetypal ribonucleoprotein condensate and discovered that demixing into distinct protein-RNA condensates cannot be the result of purely thermodynamic considerations. Instead, demixed, compositionally distinct condensates arise due to asynchronies in timescales that emerge from differences in long-lived protein-RNA and RNA-RNA crosslinks. This type of dynamical control is also found to be active in live cells whereby asynchronous production of molecules is required for realizing demixed protein-RNA condensates. We find that interactions that exert dynamical control provide a versatile and generalizable way to influence the compositions of coexisting condensates in live cells.

10.
bioRxiv ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36711465

RESUMO

Macromolecular phase separation underlies the regulated formation and dissolution of biomolecular condensates. What is unclear is how condensates of distinct and shared macromolecular compositions form and coexist within cellular milieus. Here, we use theory and computation to establish thermodynamic criteria that must be satisfied to achieve compositionally distinct condensates. We applied these criteria to an archetypal ribonucleoprotein condensate and discovered that demixing into distinct protein-RNA condensates cannot be the result of purely thermodynamic considerations. Instead, demixed, compositionally distinct condensates arise due to asynchronies in timescales that emerge from differences in long-lived protein-RNA and RNA-RNA crosslinks. This type of dynamical control is also found to be active in live cells whereby asynchronous production of molecules is required for realizing demixed protein-RNA condensates. We find that interactions that exert dynamical control provide a versatile and generalizable way to influence the compositions of coexisting condensates in live cells.

11.
Proc Natl Acad Sci U S A ; 119(41): e2207303119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191226

RESUMO

In live cells, phase separation is thought to organize macromolecules into membraneless structures known as biomolecular condensates. Here, we reconstituted transcription in condensates from purified mitochondrial components using optimized in vitro reaction conditions to probe the structure-function relationships of biomolecular condensates. We find that the core components of the mt-transcription machinery form multiphasic, viscoelastic condensates in vitro. Strikingly, the rates of condensate-mediated transcription are substantially lower than in solution. The condensate-mediated decrease in transcriptional rates is associated with the formation of vesicle-like structures that are driven by the production and accumulation of RNA during transcription. The generation of RNA alters the global phase behavior and organization of transcription components within condensates. Coarse-grained simulations of mesoscale structures at equilibrium show that the components stably assemble into multiphasic condensates and that the vesicles formed in vitro are the result of dynamical arrest. Overall, our findings illustrate the complex phase behavior of transcribing, multicomponent condensates, and they highlight the intimate, bidirectional interplay of structure and function in transcriptional condensates.


Assuntos
Corpos Nucleares , Organelas , Mitocôndrias/genética , Organelas/metabolismo , RNA/química , Relação Estrutura-Atividade
12.
Proc Natl Acad Sci U S A ; 119(28): e2202222119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787038

RESUMO

Macromolecular phase separation is thought to be one of the processes that drives the formation of membraneless biomolecular condensates in cells. The dynamics of phase separation are thought to follow the tenets of classical nucleation theory, and, therefore, subsaturated solutions should be devoid of clusters with more than a few molecules. We tested this prediction using in vitro biophysical studies to characterize subsaturated solutions of phase-separating RNA-binding proteins with intrinsically disordered prion-like domains and RNA-binding domains. Surprisingly, and in direct contradiction to expectations from classical nucleation theory, we find that subsaturated solutions are characterized by the presence of heterogeneous distributions of clusters. The distributions of cluster sizes, which are dominated by small species, shift continuously toward larger sizes as protein concentrations increase and approach the saturation concentration. As a result, many of the clusters encompass tens to hundreds of molecules, while less than 1% of the solutions are mesoscale species that are several hundred nanometers in diameter. We find that cluster formation in subsaturated solutions and phase separation in supersaturated solutions are strongly coupled via sequence-encoded interactions. We also find that cluster formation and phase separation can be decoupled using solutes as well as specific sets of mutations. Our findings, which are concordant with predictions for associative polymers, implicate an interplay between networks of sequence-specific and solubility-determining interactions that, respectively, govern cluster formation in subsaturated solutions and the saturation concentrations above which phase separation occurs.


Assuntos
Condensados Biomoleculares , Proteínas de Ligação a RNA , Biofísica , Mutação , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/genética
13.
Biochemistry ; 60(43): 3213-3222, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34648275

RESUMO

Glycine-rich regions feature prominently in intrinsically disordered regions (IDRs) of proteins that drive phase separation and the regulated formation of membraneless biomolecular condensates. Interestingly, the Gly-rich IDRs seldom feature poly-Gly tracts. The protein fused in sarcoma (FUS) is an exception. This protein includes two 10-residue poly-Gly tracts within the prion-like domain (PLD) and at the interface between the PLD and the RNA binding domain. Poly-Gly tracts are known to be highly insoluble, being potent drivers of self-assembly into solid-like fibrils. Given that the internal concentrations of FUS and FUS-like molecules cross the high micromolar and even millimolar range within condensates, we reasoned that the intrinsic insolubility of poly-Gly tracts might be germane to emergent fluid-to-solid transitions within condensates. To assess this possibility, we characterized the concentration-dependent self-assembly for three non-overlapping 25-residue Gly-rich peptides derived from FUS. Two of the three peptides feature 10-residue poly-Gly tracts. These peptides form either long fibrils based on twisted ribbon-like structures or self-supporting gels based on physical cross-links of fibrils. Conversely, the peptide with similar Gly contents but lacking a poly-Gly tract does not form fibrils or gels. Instead, it remains soluble across a wide range of concentrations. Our findings highlight the ability of poly-Gly tracts within IDRs that drive phase separation to undergo self-assembly. We propose that these tracts are likely to contribute to nucleation of fibrillar solids within dense condensates formed by FUS.


Assuntos
Glicina/metabolismo , Peptídeos/química , Proteína FUS de Ligação a RNA/metabolismo , Condensados Biomoleculares/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Microscopia Eletrônica de Transmissão/métodos , Peptídeos/metabolismo , Agregados Proteicos/genética , Agregados Proteicos/fisiologia , Domínios Proteicos/fisiologia , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
14.
Biophys Rev (Melville) ; 2(2): 021302, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34179888

RESUMO

Cellular matter can be spatially and temporally organized into membraneless biomolecular condensates. The current thinking is that these condensates form and dissolve via phase transitions driven by one or more condensate-specific multivalent macromolecules known as scaffolds. Cells likely regulate condensate formation and dissolution by exerting control over the concentrations of regulatory molecules, which we refer to as ligands. Wyman and Gill introduced the framework of polyphasic linkage to explain how ligands can exert thermodynamic control over phase transitions. This review focuses on describing the concepts of polyphasic linkage and the relevance of such a mechanism for controlling condensate formation and dissolution. We describe how ligand-mediated control over scaffold phase behavior can be quantified experimentally. Further, we build on recent studies to highlight features of ligands that make them suppressors vs drivers of phase separation. Finally, we highlight areas where advances are needed to further understand ligand-mediated control of condensates in complex cellular environments. These advances include understanding the effects of networks of ligands on condensate behavior and how ligands modulate phase transitions controlled by different combinations of homotypic and heterotypic interactions among scaffold macromolecules. Insights gained from the application of polyphasic linkage concepts should be useful for designing novel pharmaceutical ligands to regulate condensates.

15.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653957

RESUMO

Biomolecular condensates enable spatial and temporal control over cellular processes by concentrating biomolecules into nonstoichiometric assemblies. Many condensates form via reversible phase transitions of condensate-specific multivalent macromolecules known as scaffolds. Phase transitions of scaffolds can be regulated by changing the concentrations of ligands, which are defined as nonscaffold molecules that bind to specific sites on scaffolds. Here, we use theory and computation to uncover rules that underlie ligand-mediated control over scaffold phase behavior. We use the stickers-and-spacers model wherein reversible noncovalent cross-links among stickers drive phase transitions of scaffolds, and spacers modulate the driving forces for phase transitions. We find that the modulatory effects of ligands are governed by the valence of ligands, whether they bind directly to stickers versus spacers, and the relative affinities of ligand-scaffold versus scaffold-scaffold interactions. In general, all ligands have a diluting effect on the concentration of scaffolds within condensates. Whereas monovalent ligands destabilize condensates, multivalent ligands can stabilize condensates by binding directly to spacers or destabilize condensates by binding directly to stickers. Bipartite ligands that bind to stickers and spacers can alter the structural organization of scaffold molecules within condensates even when they have a null effect on condensate stability. Our work highlights the importance of measuring dilute phase concentrations of scaffolds as a function of ligand concentration in cells. This can reveal whether ligands modulate scaffold phase behavior by enabling or suppressing phase separation at endogenous levels, thereby regulating the formation and dissolution of condensates in vivo.


Assuntos
Substâncias Macromoleculares/química , Modelos Químicos , Transição de Fase , Ligantes
16.
Elife ; 92020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32662769

RESUMO

Computer simulations of model proteins with sticker-and-spacer architectures shed light on the formation of biomolecular condensates in cells.


Assuntos
Proteínas , Simulação por Computador
17.
PLoS Comput Biol ; 15(10): e1007028, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31634364

RESUMO

Many biomolecular condensates form via spontaneous phase transitions that are driven by multivalent proteins. These molecules are biological instantiations of associative polymers that conform to a so-called stickers-and-spacers architecture. The stickers are protein-protein or protein-RNA interaction motifs and / or domains that can form reversible, non-covalent crosslinks with one another. Spacers are interspersed between stickers and their preferential interactions with solvent molecules determine the cooperativity of phase transitions. Here, we report the development of an open source computational engine known as LASSI (LAttice simulation engine for Sticker and Spacer Interactions) that enables the calculation of full phase diagrams for multicomponent systems comprising of coarse-grained representations of multivalent proteins. LASSI is designed to enable computationally efficient phenomenological modeling of spontaneous phase transitions of multicomponent mixtures comprising of multivalent proteins and RNA molecules. We demonstrate the application of LASSI using simulations of linear and branched multivalent proteins. We show that dense phases are best described as droplet-spanning networks that are characterized by reversible physical crosslinks among multivalent proteins. We connect recent observations regarding correlations between apparent stoichiometry and dwell times of condensates to being proxies for the internal structural organization, specifically the convolution of internal density and extent of networking, within condensates. Finally, we demonstrate that the concept of saturation concentration thresholds does not apply to multicomponent systems where obligate heterotypic interactions drive phase transitions. This emerges from the ellipsoidal structures of phase diagrams for multicomponent systems and it has direct implications for the regulation of biomolecular condensates in vivo.


Assuntos
Biologia Computacional/métodos , Ligação Proteica/fisiologia , Proteínas/química , Animais , Simulação por Computador , Humanos , Modelos Biológicos , Modelos Químicos , Conformação Molecular , Método de Monte Carlo , Organelas/metabolismo , Transição de Fase , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA