Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Mater Lett ; 5(9): 2408-2421, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37680545

RESUMO

High power conversion efficiencies (PCE), low energy payback time (EPBT), and low manufacturing costs render perovskite solar cells (PSCs) competitive; however, a relatively low operational stability impedes their large-scale deployment. In addition, state-of-the-art PSCs are made of expensive materials, including the organic hole transport materials (HTMs) and the noble metals used as the charge collection electrode, which induce degradation in PSCs. Thus, developing inexpensive alternatives is crucial to fostering the transition from academic research to industrial development. Combining a carbon-based electrode with an inorganic HTM has shown the highest potential and should replace noble metals and organic HTMs. In this review, we illustrate the incorporation of a carbon layer as a back contact instead of noble metals and inorganic HTMs instead of organic ones as two cornerstones for achieving optimal stability and economic viability for PSCs. We discuss the primary considerations for the selection of the absorbing layer as well as the electron-transporting layer to be compatible with the champion designs and ultimate architecture for single-junction PSCs. More studies regarding the long-term stability are still required. Using the recommended device architecture presented in this work would pave the way toward constructing low-cost and stable PSCs.

2.
ACS Omega ; 8(20): 17337-17349, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37251151

RESUMO

Metal halide perovskites (MHPs) are exceptional semiconductors best known for their intriguing properties, such as high absorption coefficients, tunable bandgaps, excellent charge transport, and high luminescence yields. Among various MHPs, all-inorganic perovskites exhibit benefits over hybrid compositions. Notably, critical properties, including chemical and structural stability, could be improved by employing organic-cation-free MHPs in optoelectronic devices such as solar cells and light-emitting devices (LEDs). Due to their enticing features, including spectral tunability over the entire visible spectrum with high color purity, all-inorganic perovskites have become a focus of intense research for LEDs. This Review explores and discusses the application of all-inorganic CsPbX3 nanocrystals (NCs) in developing blue and white LEDs. We discuss the challenges perovskite-based LEDs (PLEDs) face and the potential strategies adopted to establish state-of-the-art synthetic routes to obtain rational control over dimensions and shape symmetry without compromising the optoelectronic properties. Finally, we emphasize the significance of matching the driving currents of different LED chips and balancing the aging and temperature of individual chips to realize efficient, uniform, and stable white electroluminescence.

3.
Sci Adv ; 8(35): eabo3733, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054361

RESUMO

There exists a considerable density of interaggregate grain boundaries (GBs) and intra-aggregate GBs in polycrystalline perovskites. Mitigation of intra-aggregate GBs is equally notable to that of interaggregate GBs as intra-aggregate GBs can also cause detrimental effects on the photovoltaic performances of perovskite solar cells (PSCs). Here, we demonstrate full-scale GB mitigation ranging from nanoscale intra-aggregate to submicron-scale interaggregate GBs, by modulating the crystallization kinetics using a judiciously designed brominated arylamine trimer. The optimized GB-mitigated perovskite films exhibit reduced nonradiative recombination, and their corresponding mesostructured PSCs show substantially enhanced device efficiency and long-term stability under illumination, humidity, or heat stress. The versatility of our strategy is also verified upon applying it to different categories of PSCs. Our discovery not only specifies a rarely addressed perspective concerning fundamental studies of perovskites at nanoscale but also opens a route to obtain high-quality solution-processed polycrystalline perovskites for high-performance optoelectronic devices.

4.
Sci Adv ; 7(17)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33893100

RESUMO

It is well established that the lack of understanding the crystallization process in a two-step sequential deposition has a direct impact on efficiency, stability, and reproducibility of perovskite solar cells. Here, we try to understand the solid-solid phase transition occurring during the two-step sequential deposition of methylammonium lead iodide and formamidinium lead iodide. Using metadynamics, x-ray diffraction, and Raman spectroscopy, we reveal the microscopic details of this process. We find that the formation of perovskite proceeds through intermediate structures and report polymorphs found for methylammonium lead iodide and formamidinium lead iodide. From simulations, we discover a possible crystallization pathway for the highly efficient metastable α phase of formamidinium lead iodide. Guided by these simulations, we perform experiments that result in the low-temperature crystallization of phase-pure α-formamidinium lead iodide.

5.
J Phys Chem Lett ; 12(10): 2699-2704, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33703902

RESUMO

CsPbBr3 has received wide attention due to its superior emission yield and better thermal stability compared to other organic-inorganic lead halide perovskites. In this study, through an interplay of theory and experiments, we investigate the molecular origin of the asymmetric low-temperature photoluminescence spectra of CsPbBr3. We conclude that the origin of this phenomenon lies in a local dipole moment (and the induced Stark effect) due to the preferential localization of Cs+ in either of two off-center positions of the empty space between the surrounding PbBr6 octahedra. With increasing temperature, Cs+ ions are gradually occupying positions closer and closer to the center of the cavities. The gradual loss of ordering in the Cs+ position with increasing temperature is the driving force for the formation of tetragonal-like arrangements within the orthorhombic lattice.

6.
J Phys Chem Lett ; 11(23): 10188-10195, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33205977

RESUMO

Its lower bandgap makes formamidinium lead iodide (FAPbI3) a more suitable candidate for single-junction solar cells than pure methylammonium lead iodide (MAPbI3). However, its structural and thermodynamic stability is improved by introducing a significant amount of MA and bromide, both of which increase the bandgap and amplify trade-off between the photocurrent and photovoltage. Here, we simultaneously stabilized FAPbI3 into a cubic lattice and minimized the formation of photoinactive phases such as hexagonal FAPbI3 and PbI2 by introducing 5% MAPbBr3, as revealed by synchrotron X-ray scattering. We were able to stabilize the composition (FA0.95MA0.05Cs0.05)Pb(I0.95Br0.05)3, which exhibits a minimal trade-off between the photocurrent and photovoltage. This material shows low energetic disorder and improved charge-carrier dynamics as revealed by photothermal deflection spectroscopy (PDS) and transient absorption spectroscopy (TAS), respectively. This allowed the fabrication of operationally stable perovskite solar cells yielding reproducible efficiencies approaching 22%.

7.
Angew Chem Int Ed Engl ; 59(36): 15688-15694, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400061

RESUMO

As a result of their attractive optoelectronic properties, metal halide APbI3 perovskites employing formamidinium (FA+ ) as the A cation are the focus of research. The superior chemical and thermal stability of FA+ cations makes α-FAPbI3 more suitable for solar-cell applications than methylammonium lead iodide (MAPbI3 ). However, its spontaneous conversion into the yellow non-perovskite phase (δ-FAPbI3 ) under ambient conditions poses a serious challenge for practical applications. Herein, we report on the stabilization of the desired α-FAPbI3 perovskite phase by protecting it with a two-dimensional (2D) IBA2 FAPb2 I7 (IBA=iso-butylammonium overlayer, formed via stepwise annealing. The α-FAPbI3 /IBA2 FAPb2 I7 based perovskite solar cell (PSC) reached a high power conversion efficiency (PCE) of close to 23 %. In addition, it showed excellent operational stability, retaining around 85 % of its initial efficiency under severe combined heat and light stress, that is, simultaneous exposure with maximum power tracking to full simulated sunlight at 80 °C over 500 h.

8.
Adv Mater ; 32(12): e1907757, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32068922

RESUMO

Passivation of interfacial defects serves as an effective means to realize highly efficient and stable perovskite solar cells (PSCs). However, most molecular modulators currently used to mitigate such defects form poorly conductive aggregates at the perovskite interface with the charge collection layer, impeding the extraction of photogenerated charge carriers. Here, a judiciously engineered passivator, 4-tert-butyl-benzylammonium iodide (tBBAI), is introduced, whose bulky tert-butyl groups prevent the unwanted aggregation by steric repulsion. It is found that simple surface treatment with tBBAI significantly accelerates the charge extraction from the perovskite into the spiro-OMeTAD hole-transporter, while retarding the nonradiative charge carrier recombination. This boosts the power conversion efficiency (PCE) of the PSC from ≈20% to 23.5% reducing the hysteresis to barely detectable levels. Importantly, the tBBAI treatment raises the fill factor from 0.75 to the very high value of 0.82, which concurs with a decrease in the ideality factor from 1.72 to 1.34, confirming the suppression of radiation-less carrier recombination. The tert-butyl group also provides a hydrophobic umbrella protecting the perovskite film from attack by ambient moisture. As a result, the PSCs show excellent operational stability retaining over 95% of their initial PCE after 500 h full-sun illumination under maximum-power-point tracking under continuous simulated solar irradiation.

9.
Small ; 15(49): e1904746, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31670469

RESUMO

Today's perovskite solar cells (PSCs) mostly use components, such as organic hole conductors or noble metal back contacts, that are very expensive or cause degradation of their photovoltaic performance. For future large-scale deployment of PSCs, these components need to be replaced with cost-effective and robust ones that maintain high efficiency while ascertaining long-term operational stability. Here, a simple and low-cost PSC architecture employing dopant-free TiO2 and CuSCN as the electron and hole conductor, respectively, is introduced while a graphitic carbon layer deposited at room temperature serves as the back electrical contact. The resulting PSCs show efficiencies exceeding 18% under standard AM 1.5 solar illumination and retain ≈95% of their initial efficiencies for >2000 h at the maximum power point under full-sun illumination at 60 °C. In addition, the CuSCN/carbon-based PSCs exhibit remarkable stability under ultraviolet irradiance for >1000 h while under similar conditions, the standard spiro-MeOTAD/Au based devices degrade severely.

10.
Research (Wash D C) ; 2019: 8474698, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31549091

RESUMO

High photovoltages and power conversion efficiencies of perovskite solar cells (PSCs) can be realized by controlling the undesired nonradiative charge carrier recombination. Here, we introduce a judicious amount of guanidinium iodide into mixed-cation and mixed-halide perovskite films to suppress the parasitic charge carrier recombination, which enabled the fabrication of >20% efficient and operationally stable PSCs yielding reproducible photovoltage as high as 1.20 V. By introducing guanidinium iodide into the perovskite precursor solution, the bandgap of the resulting absorber material changed minimally; however, the nonradiative recombination diminished considerably as revealed by time-resolved photoluminescence and electroluminescence studies. Furthermore, using capacitance-frequency measurements, we were able to correlate the hysteresis features exhibited by the PSCs with interfacial charge accumulation. This study opens up a path to realize new record efficiencies for PSCs based on guanidinium iodide doped perovskite films.

11.
Science ; 365(6453): 591-595, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395783

RESUMO

Although ß-CsPbI3 has a bandgap favorable for application in tandem solar cells, depositing and stabilizing ß-CsPbI3 experimentally has remained a challenge. We obtained highly crystalline ß-CsPbI3 films with an extended spectral response and enhanced phase stability. Synchrotron-based x-ray scattering revealed the presence of highly oriented ß-CsPbI3 grains, and sensitive elemental analyses-including inductively coupled plasma mass spectrometry and time-of-flight secondary ion mass spectrometry-confirmed their all-inorganic composition. We further mitigated the effects of cracks and pinholes in the perovskite layer by surface treating with choline iodide, which increased the charge-carrier lifetime and improved the energy-level alignment between the ß-CsPbI3 absorber layer and carrier-selective contacts. The perovskite solar cells made from the treated material have highly reproducible and stable efficiencies reaching 18.4% under 45 ± 5°C ambient conditions.

12.
J Phys Chem Lett ; 10(13): 3543-3549, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31194558

RESUMO

5-Ammonium valeric acid (AVA) is a frequently used additive in the preparation of lead halide perovskites. However, its microscopic role as passivating, cross-linking, or templating agent is far from clear. In this work, we provide density functional theory-based structural models for the Ruddlesden-Popper (RP) phases of AVA2(CH3NH3) n-1Pb nI3 n+1 for n = 1, 2, and 3 and validate with experimental data on polycrystalline samples for n = 1. The structural and electronic properties of the AVA-based RP phases are compared to the ones of other linker families. In contrast to aromatic and aliphatic spacers without additional functional groups, the RP phases of AVA are characterized by the formation of a regular and stable H-bonding network between the carbonyl head groups of adjacent AVA molecules in opposite layers. Because of these additional interactions, the penetration depth of the organic layer into the perovskite sheet is reduced with direct consequences for its crystalline phase. The possibility of forming strong interlinker hydrogen bonds may lead to an enhanced thermal stability.

13.
Sci Adv ; 5(6): eaaw2543, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31187060

RESUMO

Preventing the degradation of metal perovskite solar cells (PSCs) by humid air poses a substantial challenge for their future deployment. We introduce here a two-dimensional (2D) A2PbI4 perovskite layer using pentafluorophenylethylammonium (FEA) as a fluoroarene cation inserted between the 3D light-harvesting perovskite film and the hole-transporting material (HTM). The perfluorinated benzene moiety confers an ultrahydrophobic character to the spacer layer, protecting the perovskite light-harvesting material from ambient moisture while mitigating ionic diffusion in the device. Unsealed 3D/2D PSCs retain 90% of their efficiency during photovoltaic operation for 1000 hours in humid air under simulated sunlight. Remarkably, the 2D layer also enhances interfacial hole extraction, suppressing nonradiative carrier recombination and enabling a power conversion efficiency (PCE) >22%, the highest reported for 3D/2D architectures. Our new approach provides water- and heat-resistant operationally stable PSCs with a record-level PCE.

14.
Nano Lett ; 19(1): 150-157, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30540195

RESUMO

Three-dimensional (3D) perovskite materials display remarkable potential in photovoltaics owing to their superior solar-to-electric power conversion efficiency, with current efforts focused on improving stability. Two-dimensional (2D) perovskite analogues feature greater stability toward environmental factors, such as moisture, owing to a hydrophobic organic cation that acts as a spacer between the inorganic layers, which offers a significant advantage over their comparatively less stable 3D analogues. Here, we demonstrate the first example of a formamidinium (FA) containing Dion-Jacobson 2D perovskite material characterized by the BFA n-1Pb nI3 n+1 formulation through employing a novel bifunctional organic spacer (B), namely 1,4-phenylenedimethanammonium (PDMA). We achieve remarkable efficiencies exceeding 7% for (PDMA)FA2Pb3I10 based 2D perovskite solar cells resisting degradation when exposed to humid ambient air, which opens up new avenues in the design of stable perovskite materials.

15.
J Phys Chem Lett ; 9(23): 6750-6754, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400741

RESUMO

The exchange of ions in hybrid organic-inorganic perovskites with the general formula APbX3 (A = MA, FA; X = I, Cl, Br) is studied in five different systems using in situ real-time grazing incident X-ray diffraction (GIXD). In systems where the organic cation is exchanged, we find a continuous shift of the lattice parameter. The relative shift compared to the pure materials is used to quantify the exchange. Whether or not a conversion is possible, as well as the amount of exchanged cations, depends on the halide used. In the case of the interconversion of MAPbI3 and MAPbCl3, we observe a decay of the diffraction peaks of the original perovskite and the emergence of new peaks corresponding to the structure with the alternative halide. Moreover, we determined the relevant time scales of the growth and decay of the perovskite structures.

16.
Angew Chem Int Ed Engl ; 57(43): 14125-14128, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30126024

RESUMO

The synthesis, characterization, and photovoltaic performance of a series of indacenodithiophene (IDT)-based D-π-A organic dyes with varying electron-accepting units is presented. By control of the electron affinity, perfectly matching energy levels were achieved with a copper(I/II)-based redox electrolyte, reaching a high open-circuit voltage (>1.1 V) while harvesting a large fraction of solar photons at the same time. Besides achieving high power conversion efficiencies (PCEs) for dye-sensitized solar cells (DSCs), that is, 11.2 % under standard AM 1.5 G sunlight, and 28.4 % under a 1000 lux fluorescent light tube, this work provides a possible method for the design and fabrication of low-cost highly efficient DSCs.

17.
Small ; 14(36): e1802033, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30091843

RESUMO

Efficiencies >20% are obtained from the perovskite solar cells (PSCs) employing Cs+ and Rb+ based perovskite compositions; therefore, it is important to understand the effect of these inorganic cations specifically Rb+ on the properties of perovskite structures. Here the influence of Cs+ and Rb+ is elucidated on the structural, morphological, and photophysical properties of perovskite structures and the photovoltaic performances of resulting PSCs. Structural, photoluminescence (PL), and external quantum efficiency studies establish the incorporation of Cs+ (x < 10%) but amply rule out the possibility of Rb-incorporation into the MAPbI3 (MA = CH3 NH3+ ) lattice. Moreover, morphological studies and time-resolved PL show that both Cs+ and Rb+ detrimentally affect the surface coverage of MAPbI3 layers and charge-carrier dynamics, respectively, by influencing nucleation density and by inducing nonradiative recombination. In addition, differential scanning calorimetry shows that the transition from orthorhombic to tetragonal phase occurring around 160 K requires more thermal energy for the Cs-containing MAPbI3 systems compared to the pristine MAPbI3 . Investigation including mixed halide (I/Br) and mixed cation A-cation based compositions further confirms the absence of Rb+ from the 3D-perovskite lattice. The fundamental insights gained through this work will be of great significance to further understand highly promising perovskite compositions.

18.
ACS Nano ; 12(7): 7301-7311, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29953817

RESUMO

We report significant improvements in the optoelectronic properties of lead halide perovskites with the addition of monovalent ions with ionic radii close to Pb2+. We investigate the chemical distribution and electronic structure of solution processed CH3NH3PbI3 perovskite structures containing Na+, Cu+, and Ag+, which are lower valence metal ions than Pb2+ but have similar ionic radii. Synchrotron X-ray diffraction reveals a pronounced shift in the main perovskite peaks for the monovalent cation-based films, suggesting incorporation of these cations into the perovskite lattice as well as a preferential crystal growth in Ag+ containing perovskite structures. Furthermore, the synchrotron X-ray photoelectron measurements show a significant change in the valence band position for Cu- and Ag-doped films, although the perovskite bandgap remains the same, indicating a shift in the Fermi level position toward the middle of the bandgap. Such a shift infers that incorporation of these monovalent cations dedope the n-type perovskite films when formed without added cations. This dedoping effect leads to cleaner bandgaps as reflected by the lower energetic disorder in the monovalent cation-doped perovskite thin films as compared to pristine films. We also find that in contrast to Ag+ and Cu+, Na+ locates mainly at the grain boundaries and surfaces. Our theoretical calculations confirm the observed shifts in X-ray diffraction peaks and Fermi level as well as absence of intrabandgap states upon energetically favorable doping of perovskite lattice by the monovalent cations. We also model a significant change in the local structure, chemical bonding of metal-halide, and the electronic structure in the doped perovskites. In summary, our work highlights the local chemistry and influence of monovalent cation dopants on crystallization and the electronic structure in the doped perovskite thin films.

19.
ACS Appl Mater Interfaces ; 9(51): 44423-44428, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29185697

RESUMO

Two new donor-acceptor (D-A)-substituted S,N-heteroacene-based molecules were developed and investigated as hole-transporting material (HTM) for perovskite solar cells (PSCs). Optical and electrochemical characterization brought out that the energy levels of both HTMs are suitable for their use in PSCs. Consequently, a power-conversion efficiency of 17.7% and 16.1% was achieved from PSCs involving the HTM-1 and HTM-2, respectively. The optoelectronic properties in terms of series resistance, conductivity, and charge carrier recombination were further examined to unfold the potential of these new HTMs. Time-resolved photoluminescence spectroscopy brought out that the hole injection from the valence band of perovskite into HTMs follows the trend, which is in accordance with the position of the highest occupied molecular orbital. Overall, our findings underline the potential of S,N-heteroacene co-oligomers as promising HTM candidates for PSCs.

20.
Science ; 358(6364): 768-771, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28971968

RESUMO

Perovskite solar cells (PSCs) with efficiencies greater than 20% have been realized only with expensive organic hole-transporting materials. We demonstrate PSCs that achieve stabilized efficiencies exceeding 20% with copper(I) thiocyanate (CuSCN) as the hole extraction layer. A fast solvent removal method enabled the creation of compact, highly conformal CuSCN layers that facilitate rapid carrier extraction and collection. The PSCs showed high thermal stability under long-term heating, although their operational stability was poor. This instability originated from potential-induced degradation of the CuSCN/Au contact. The addition of a conductive reduced graphene oxide spacer layer between CuSCN and gold allowed PSCs to retain >95% of their initial efficiency after aging at a maximum power point for 1000 hours under full solar intensity at 60°C. Under both continuous full-sun illumination and thermal stress, CuSCN-based devices surpassed the stability of spiro-OMeTAD-based PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA